For a commuting n-tuple of matrices we introduce the notion of a joint spectral radius with respect to the p-norm and prove a spectral radius formula.
@article{bwmeta1.element.bwnjournal-article-smv114i1p29bwm, author = {Rajendra Bhatia and Tirthankar Vhattacharyya}, title = {On the joint spectral radius of commuting matrices}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {29-38}, zbl = {0830.47002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv114i1p29bwm} }
Bhatia, Rajendra; Вhattacharyya, Tirthankar. On the joint spectral radius of commuting matrices. Studia Mathematica, Tome 113 (1995) pp. 29-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv114i1p29bwm/
[00000] [BW] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27. | Zbl 0818.15006
[00001] [C1] R. E. Curto, The spectra of elementary operators, Indiana Univ. Math. J. 32 (1983), 193-197. | Zbl 0488.47002
[00002] [C2] R. E. Curto, Applications of several complex variables to multiparameter spectral theory, in: Surveys of Some Recent Results in Operator Theory, Vol. 2, J. B. Conway and B. B. Morrel (eds.), Longman Scientific and Technical, Essex, 1989, 25-80.
[00003] [CH] M. Chō and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44. | Zbl 0776.47004
[00004] [CZ] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. | Zbl 0784.47004
[00005] [DL] I. Daubechies and J. C. Lagarias, Sets of matrices all finite products of which converge, Linear Algebra Appl. 161 (1992), 227-263. | Zbl 0746.15015
[00006] [E] L. Elsner, The generalized spectral radius theorem, an analytic-geometric proof, Linear Algebra Appl., to appear. | Zbl 0828.15006
[00007] [FN] T. Furuta and R. Nakamoto, On the numerical range of an operator, Proc. Japan Acad. 47 (1971), 279-284. | Zbl 0227.47002
[00008] [HJ] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985.
[00009] [MS] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333. | Zbl 0812.47004
[00010] [P] V. I. Paulsen, Completely Bounded Maps and Dilations, Longman Scientific and Technical, Essex, 1986.
[00011] [R] G. C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472. | Zbl 0097.31604
[00012] [RS] G. C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. | Zbl 0095.09701