It is shown that the Bourgain algebra of the disk algebra A() with respect to is the algebra generated by the Blaschke products having only a finite number of singularities. It is also proved that, with respect to , the algebra QA of bounded analytic functions of vanishing mean oscillation is invariant under the Bourgain map as is .
@article{bwmeta1.element.bwnjournal-article-smv113i3p211bwm, author = {Joseph Cima and Raymond Mortini}, title = {The Bourgain algebra of the disk algebra A(D) and the algebra QA}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {211-221}, zbl = {0828.46050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i3p211bwm} }
Cima, Joseph; Mortini, Raymond. The Bourgain algebra of the disk algebra A(𝔻) and the algebra QA. Studia Mathematica, Tome 113 (1995) pp. 211-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i3p211bwm/
[00000] [1] S.-Y. Chang and D. E. Marshall, Some algebras of bounded analytic functions containing the disc algebra, in: Lecture Notes in Math. 604, Springer, 1977, 12-20.
[00001] [2] J. Cima, S. Janson and K. Yale, Completely continuous Hankel operators on and Bourgain algebras, Proc. Amer. Math. Soc. 105 (1989), 121-125.
[00002] [3] J. Cima, K. Stroethoff and K. Yale, Bourgain algebras on the unit disk, Pacific J. Math. 160 (1993), 27-41. | Zbl 0816.46046
[00003] [4] J. Cima, S. Janson and K. Yale, The Bourgain algebra of the disk algebra, Proc. Roy. Irish Acad. 94A (1994), 19-23. | Zbl 0804.46065
[00004] [5] J. Cima and R. Timoney, The Dunford-Pettis property for certain planar uniform algebras, Michigan Math. J. 34 (1987), 99-104. | Zbl 0617.46058
[00005] [6] K. F. Clancey and J. A. Gosselin, The local theory of Toeplitz operators, Illinois J. Math. 22 (1978), 449-458. | Zbl 0384.47022
[00006] [7] A. Davie, T. W. Gamelin and J. B. Garnett, Distance estimates and pointwise bounded density, Trans. Amer. Math. Soc. 175 (1973), 37-68. | Zbl 0263.30033
[00007] [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. | Zbl 0469.30024
[00008] [9] I. M. Gelfand, D. A. Raikov and G. E. Shilov, Kommutative normierte Algebren, Deutscher Verlag Wiss., Berlin, 1964.
[00009] [10] P. Gorkin and K. Izuchi, Bourgain algebras on the maximal ideal space of , Rocky Mountain J. Math., to appear. | Zbl 0843.46037
[00010] [11] P. Gorkin, K. Izuchi and R. Mortini, Bourgain algebras of Douglas algebras, Canad. J. Math. 44 (1992), 797-804. | Zbl 0763.46046
[00011] [12] P. Helmer and J. Pym, Approximation by functions with finitely many discontinuities, Quart. J. Math. Oxford 43 (1992), 223-226. | Zbl 0766.54011
[00012] [13] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N.J., 1962. | Zbl 0117.34001
[00013] [14] K. Izuchi, Bourgain algebras of the disk, polydisk, and ball algebras, Duke Math. J. 66 (1992), 503-520. | Zbl 0806.46061
[00014] [15] K. Izuchi, K. Stroethoff and K. Yale, Bourgain algebras of spaces of harmonic functions, Michigan Math. J. 41 (1994), 309-321. | Zbl 0916.46043
[00015] [16] D. E. Marshall and K. Stephenson, Inner divisors and composition operators, J. Funct. Anal. 46 (1982), 131-148. | Zbl 0485.30037
[00016] [17] R. Mortini and M. von Renteln, Strong extreme points and ideals in uniform algebras, Arch. Math. (Basel) 52 (1989), 465-470. | Zbl 0639.46046
[00017] [18] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. | Zbl 0319.42006
[00018] [19] C. Sundberg and T. H. Wolff, Interpolating sequences for , ibid. 276 (1983), 551-581. | Zbl 0536.30025
[00019] [20] T. H. Wolff, Some theorems of vanishing mean oscillation, thesis, Univ. of California, Berkeley, 1979.