Under certain conditions on a function space X, it is proved that for every -function f with one can find a function φ, 0 ≤ φ ≤ 1, such that φf ∈ X, and . For X one can take, e.g., the space of functions with uniformly bounded Fourier sums, or the space of -functions on whose convolutions with a fixed finite collection of Calderón-Zygmund kernels are also bounded.
@article{bwmeta1.element.bwnjournal-article-smv113i2p177bwm, author = {S. Kisliakov}, title = {A sharp correction theorem}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {177-196}, zbl = {0833.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p177bwm} }
Kisliakov, S. A sharp correction theorem. Studia Mathematica, Tome 113 (1995) pp. 177-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p177bwm/
[00000] [1] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.
[00001] [2] S. V. Khrushchëv, Simple proof of a theorem on removable singularities of analytic functions satisfying a Lipschitz condition, Zap. Nauchn. Sem. LOMI 113 (1981), 199-203 (in Russian); English transl.: J. Soviet Math. 22 (1983), 1829-1832. | Zbl 0476.30034
[00002] [3] S. V. Khrushchëv [S. V. Hruščëv] and S. A. Vinogradov, Free interpolation in the space of uniformly convergent Taylor series, in: Lecture Notes in Math. 864, Springer, Berlin, 1981, 171-213.
[00003] [4] S. V. Kisliakov, Once again on the free interpolation by functions which are regular outside a prescribed set, Zap. Nauchn. Sem. LOMI 107 (1982), 71-88 (in Russian); English transl. in J. Soviet Math. | Zbl 0499.41002
[00004] [5] S. V. Kisliakov, Quantitative aspect of correction theorems, Zap. Nauchn. Sem. LOMI 92 (1979), 182-191 (in Russian); English transl. in J. Soviet Math. | Zbl 0434.42017
[00005] [6] S. V. Kisliakov, Quantitative aspect of correction theorems, II, Zap. Nauchn. Sem. POMI 217 (1994), 83-91 (in Russian).
[00006] [7] J. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), 7-48. | Zbl 0627.42008
[00007] [8] S. A. Vinogradov, A strengthened form of Kolmogorov's t heorem on the conjugate function and interpolation properties of uniformly convergent power series, Trudy Mat. Inst. Steklov. 155 (1981), 7-40 (in Russian); English transl.: Proc. Steklov Inst. Math. 155 (1981), 3-37. | Zbl 0468.30036