Let 1 < p < ∞, q = p/(p-1) and for define , x > 0. Moser’s Inequality states that there is a constant such that where is the unit ball of . Moreover, the value a = 1 is sharp. We observe that f where the integral operator has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue of Moser’s Inequality to hold. An internal constant ψ, the counterpart of the constant a, arises naturally. We give a condition on K that ψ be sharp. Some applications are discussed.
@article{bwmeta1.element.bwnjournal-article-smv113i2p141bwm, author = {Finbarr Holland and David Walsh}, title = {Moser's Inequality for a class of integral operators}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {141-168}, zbl = {0843.26008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p141bwm} }
Holland, Finbarr; Walsh, David. Moser's Inequality for a class of integral operators. Studia Mathematica, Tome 113 (1995) pp. 141-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p141bwm/
[00000] [1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398. | Zbl 0672.31008
[00001] [2] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[00002] [3] L. Carleson and S. Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986), 113-127. | Zbl 0619.58013
[00003] [4] S. Y. A. Chang, Extremal functions in a sharp form of Sobolev inequality, in: Proc. Internat. Congress of Mathematicians, Berkeley, Calif., 1986.
[00004] [5] I. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, translated from the fourth Russian ed., Scripta Technica, Academic Press, 1965. | Zbl 0918.65002
[00005] [6] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals I, Math. Z. 27 (1928), 565-606. | Zbl 54.0275.05
[00006] [7] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1967.
[00007] [8] M. Jodeit, An inequality for the indefinite integral of a function in , Studia Math. 44 (1972), 545-554. | Zbl 0244.26010
[00008] [9] D. E. Marshall, A new proof of a sharp inequality concerning the Dirichlet integral, Ark. Mat. 27 (1989), 131-137. | Zbl 0692.30028
[00009] [10] P. McCarthy, A sharp inequality related to Moser's inequality, Mathematika 40 (1993), 357-366. | Zbl 0822.26012
[00010] [11] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092. | Zbl 0203.43701
[00011] [12] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | Zbl 0207.13501