On local automorphisms and mappings that preserve idempotents
Brešar, Matej ; Šemrl, Peter
Studia Mathematica, Tome 113 (1995), p. 101-108 / Harvested from The Polish Digital Mathematics Library

Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216163
@article{bwmeta1.element.bwnjournal-article-smv113i2p101bwm,
     author = {Matej Bre\v sar and Peter \v Semrl},
     title = {On local automorphisms and mappings that preserve idempotents},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {101-108},
     zbl = {0835.47020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p101bwm}
}
Brešar, Matej; Šemrl, Peter. On local automorphisms and mappings that preserve idempotents. Studia Mathematica, Tome 113 (1995) pp. 101-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p101bwm/

[00000] [1] L. B. Beasley and N. J. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7-20. | Zbl 0718.15004

[00001] [2] M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), 454-462. | Zbl 0769.16015

[00002] [3] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496. | Zbl 0796.15001

[00003] [4] G. H. Chan, M. H. Lim and K. K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80. | Zbl 0619.15003

[00004] [5] P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289. | Zbl 0252.46086

[00005] [6] M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105. | Zbl 0061.25301

[00006] [7] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969. | Zbl 0232.16001

[00007] [8] N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. | Zbl 0039.26402

[00008] [9] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. | Zbl 0589.47003

[00009] [10] R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509. | Zbl 0751.46041

[00010] [11] D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Providence, R.I., 1990, 187-194. | Zbl 0713.47045

[00011] [12] C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465.