On the embedding of 2-concave Orlicz spaces into L¹
Schütt, Carsten
Studia Mathematica, Tome 113 (1995), p. 73-80 / Harvested from The Polish Digital Mathematics Library

In [K-S 1] it was shown that Aveπ(i=1n|xiaπ(i)|2)1/2 is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence a1,...,an so that the above expression is equivalent to a given Orlicz norm.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216161
@article{bwmeta1.element.bwnjournal-article-smv113i1p73bwm,
     author = {Carsten Sch\"utt},
     title = {On the embedding of 2-concave Orlicz spaces into L$^1$},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {73-80},
     zbl = {0835.46023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p73bwm}
}
Schütt, Carsten. On the embedding of 2-concave Orlicz spaces into L¹. Studia Mathematica, Tome 113 (1995) pp. 73-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p73bwm/

[00000] [B-D] J. Bretagnolle et D. Dacunha-Castelle, Application de l’étude de certaines formes linéaires aléatoires au plongement d’espaces de Banach dans les espaces Lp, Ann. Sci. École Norm. Sup. 2 (1969), 437-480. | Zbl 0229.60006

[00001] [K-S1] S. Kwapień and C. Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory, Studia Math. 82 (1985), 91-106. | Zbl 0579.46013

[00002] [K-S2] S. Kwapień and C. Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory II, ibid. 95 (1989), 141-154. | Zbl 0706.46014