In [K-S 1] it was shown that is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence so that the above expression is equivalent to a given Orlicz norm.
@article{bwmeta1.element.bwnjournal-article-smv113i1p73bwm, author = {Carsten Sch\"utt}, title = {On the embedding of 2-concave Orlicz spaces into L$^1$}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {73-80}, zbl = {0835.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p73bwm} }
Schütt, Carsten. On the embedding of 2-concave Orlicz spaces into L¹. Studia Mathematica, Tome 113 (1995) pp. 73-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p73bwm/
[00000] [B-D] J. Bretagnolle et D. Dacunha-Castelle, Application de l’étude de certaines formes linéaires aléatoires au plongement d’espaces de Banach dans les espaces , Ann. Sci. École Norm. Sup. 2 (1969), 437-480. | Zbl 0229.60006
[00001] [K-S1] S. Kwapień and C. Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory, Studia Math. 82 (1985), 91-106. | Zbl 0579.46013
[00002] [K-S2] S. Kwapień and C. Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory II, ibid. 95 (1989), 141-154. | Zbl 0706.46014