On automatic boundedness of Nemytskiĭ set-valued operators
Rolewicz, S. ; Song, Wen
Studia Mathematica, Tome 113 (1995), p. 65-72 / Harvested from The Polish Digital Mathematics Library

Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let NF be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function F:Ω×X2Y. It is shown that if NF maps a modular space (N(L(Ω,Σ,μ;X)),ϱN,μ) into subsets of a modular space (M(L(Ω,Σ,μ;Y)),ϱM,μ), then NF is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that rK=supϱN,μ(x):xK< we have supϱM,μ(y):yNF(K)<.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216160
@article{bwmeta1.element.bwnjournal-article-smv113i1p65bwm,
     author = {S. Rolewicz and Wen Song},
     title = {On automatic boundedness of Nemytski\u\i\ set-valued operators},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {65-72},
     zbl = {0826.47052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p65bwm}
}
Rolewicz, S.; Song, Wen. On automatic boundedness of Nemytskiĭ set-valued operators. Studia Mathematica, Tome 113 (1995) pp. 65-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p65bwm/

[00000] [1] J. Appell, Nguyen Hong Tai and P. P. Zabrejko [P. P. Zabreǐko], Multivalued superposition operators in ideal spaces of vector functions. I, II, Indag. Math. (N.S.) 2 (1991), 385-395, 397-409. | Zbl 0748.47050

[00001] [2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.

[00002] [3] M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Halsted Press, New York, 1985. | Zbl 0596.47038

[00003] [4] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.

[00004] [5] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65. | Zbl 0086.08901

[00005] [6] J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. 7 (1959), 661-668. | Zbl 0099.09202

[00006] [7] H. Nakano, Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I 6 (1950), 85-131. | Zbl 0042.35903

[00007] [8] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950. | Zbl 0041.23401

[00008] [9] H. Nakano, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951.

[00009] [10] V. Niemytzki [V. Nemytskiĭ], Sur les équations intégrales non linéaires, C. R. Acad. Sci. Paris 196 (1933), 836-838. | Zbl 0006.20901

[00010] [11] V. Niemytzki [V. Nemytskiĭ], Théorèmes d'existence et d'unicité des solutions de quelques équations intégrales non-linéaires, Mat. Sb. 41 (1934), 421-438. | Zbl 0011.02603

[00011] [12] T. Pruszko, Topological degree methods in multi-valued boundary value problems, Nonlinear Anal. 5 (1981), 959-973. | Zbl 0478.34017

[00012] [13] S. Rolewicz, Metric Linear Spaces, Reidel and PWN, 1985.

[00013] [14] W. Song, Multivalued superposition operators in Lp(Ω,X), preprint.