We introduce a decomposition of holomorphic functions on Fréchet spaces which reduces to the Taylor series expansion in the case of Banach spaces and to the monomial expansion in the case of Fréchet nuclear spaces with basis. We apply this decomposition to obtain examples of Fréchet spaces E for which the τ_{ω} and τ_{δ} topologies on H(E) coincide. Our result includes, with simplified proofs, the main known results-Banach spaces with an unconditional basis and Fréchet nuclear spaces with DN [2, 4, 5, 6] - together with new examples, e.g. Banach spaces with an unconditional finite-dimensional Schauder decomposition and certain Fréchet-Schwartz spaces. This gives the first examples of Fréchet spaces, which are not nuclear, with τ_{0} = τ_{δ} on H(E).
@article{bwmeta1.element.bwnjournal-article-smv113i1p43bwm, author = {Se\'an Dineen}, title = {Holomorphic functions and Banach-nuclear decompositions of Fr\'echet spaces}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {43-54}, zbl = {0831.46048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p43bwm} }
Dineen, Seán. Holomorphic functions and Banach-nuclear decompositions of Fréchet spaces. Studia Mathematica, Tome 113 (1995) pp. 43-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p43bwm/
[00000] [1] J. Bonet and J. C. Díaz, The problem of topologies of Grothendieck and the class of Fréchet T-spaces, Math. Nachr. 150 (1991), 109-118. | Zbl 0754.46043
[00001] [2] G. Coeuré, Fonctions analytiques sur certains espaces de Banach, Ann. Inst. Fourier (Grenoble) 21 (2) (1971), 15-21. | Zbl 0205.41303
[00002] [3] S. Dineen, Bounding subsets of a Banach space, Math. Ann. 192 (1971), 61-70. | Zbl 0202.12803
[00003] [4] S. Dineen, Holomorphic functions on -modules, ibid. 196 (1972), 106-116. | Zbl 0219.46021
[00004] [5] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, 1981. | Zbl 0484.46044
[00005] [6] S. Dineen, Analytic functionals on fully nuclear spaces, Studia Math. 73 (1982), 11-32. | Zbl 0532.46022
[00006] [7] S. Dineen, Holomorphic functions and the (BB)-property, Math. Scand., to appear. | Zbl 0870.46029
[00007] [8] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30. | Zbl 0424.46004
[00008] [9] T. Ketonen, On unconditionality in -spaces, Ann. Acad. Sci. Fenn. Dissertationes 35 (1981).
[00009] [10] G. Metafune, Quojections and finite dimensional decompositions, preprint.
[00010] [11] D. Vogt, Subspaces and quotients of (s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchsteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 167-187.