We establish the topological relationship between compact Hausdorff spaces X and Y equivalent to the existence of a bound-2 isomorphism of the sup norm Banach spaces C(X) and C(Y).
@article{bwmeta1.element.bwnjournal-article-smv113i1p1bwm, author = {H. Cohen and C.-H. Chu}, title = {Topological conditions for bound-2 isomorphisms of C(X)}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {1-24}, zbl = {0822.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p1bwm} }
Cohen, H.; Chu, C.-H. Topological conditions for bound-2 isomorphisms of C(X). Studia Mathematica, Tome 113 (1995) pp. 1-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i1p1bwm/
[00000] [1] D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205-210. | Zbl 0141.31301
[00001] [2] E. Behrends, M-structure and the Banach-Stone Theorem, Lecture Notes in Math. 736, Springer, 1979. | Zbl 0436.46013
[00002] [3] Y. Benyamini, Near isometries in the class of -preduals, Israel J. Math. 20 (1975), 275-291.
[00003] [4] M. Cambern, A generalized Banach-Stone Theorem, Proc. Amer. Math. Soc. 17 (1966), 396-400. | Zbl 0156.36902
[00004] [5] M. Cambern, On isomorphisms with small bounds, ibid. 18 (1967), 1062-1066.
[00005] [6] M. Cambern, On isomorphisms, ibid. 78 (1980), 227-229.
[00006] [7] M. Cambern, Isomorphisms of spaces of norm continuous functions, Pacific J. Math. 116 (1985), 243-254. | Zbl 0569.46018
[00007] [8] M. Cambern and P. Greim, The bidual of C(X,E), Proc. Amer. Math. Soc. 85 (1982), 53-583. | Zbl 0487.46017
[00008] [9] M. Cambern and P. Greim, The dual of a space of vector measures, Math. Z. 180 (1982), 373-378. | Zbl 0471.46016
[00009] [10] H. B. Cohen, A bound-two isomorphism for C(X) Banach spaces, Proc. Amer. Math. Soc. 50 (1975), 215-217. | Zbl 0317.46025
[00010] [11] H. B. Cohen, A second-dual method for C(X) isomorphism, J. Funct. Anal. 23 (1975), 107-118. | Zbl 0337.46029
[00011] [12] C. H. Chu and H. B. Cohen, Isomorphisms of spaces of continuous affine functions, Pacific J. Math. 155 (1992), 71-85. | Zbl 0728.46011
[00012] [13] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2, (1951), 151-182.
[00013] [14] H. Gordon, The maximal ideal space of a ring of measurable functions, Amer. J. Math. 88 (1966), 827-843. | Zbl 0156.36904
[00014] [15] J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963), 38-43. | Zbl 0116.08304
[00015] [16] K. Jarosz, Small isomorphisms of C(X,E) spaces, Pacific J. Math. 138 (1989), 295-315. | Zbl 0698.46033
[00016] [17] S. Kakutani, Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math. 42 (1941), 523-537. | Zbl 0027.11102
[00017] [18] J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. 72 (1952), 323-326. | Zbl 0046.12002
[00018] [19] J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466. | Zbl 0085.09702