A quasi-affine transform of an unbounded operator
Ôta, Schôichi
Studia Mathematica, Tome 113 (1995), p. 279-284 / Harvested from The Polish Digital Mathematics Library

Some results on quasi-affinity for bounded operators are extended to unbounded ones and normal extensions of an unbounded operator are discussed in connection with quasi-affinity.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216154
@article{bwmeta1.element.bwnjournal-article-smv112i3p279bwm,
     author = {Sch\^oichi \^Ota},
     title = {A quasi-affine transform of an unbounded operator},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {279-284},
     zbl = {0820.47026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p279bwm}
}
Ôta, Schôichi. A quasi-affine transform of an unbounded operator. Studia Mathematica, Tome 113 (1995) pp. 279-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p279bwm/

[00000] [1] G. Biriuk and E. A. Coddington, Normal extensions of unbounded formally normal operators, J. Math. Mech. 12 (1964), 617-638. | Zbl 0129.08603

[00001] [2] R. G. Douglas, On the operator equations S*XT=X and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19-32. | Zbl 0177.19204

[00002] [3] J. Janas, On unbounded hyponormal operators, Ark. Mat. 27 (1989), 273-281. | Zbl 0684.47020

[00003] [4] K. H. Jin, On unbounded subnormal operators, Bull. Korean Math. Soc. 30 (1993), 65-70. | Zbl 0806.47023

[00004] [5] M. Martin and M. Putinar, Lectures on Hyponormal Operators, Oper. Theory: Adv. Appl. 39, Birkhäuser, Basel, 1989.

[00005] [6] G. McDonald and C. Sundberg, On the spectra of unbounded subnormal operators, Canad. J. Math. 38 (1986), 1135-1148. | Zbl 0647.47036

[00006] [7] S. Ôta and K. Schmüdgen, On some classes of unbounded operators, Integral Equations Operator Theory 27 (1989), 273-281. | Zbl 0683.47031

[00007] [8] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357-362. | Zbl 0042.34501

[00008] [9] H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34 (1971), 653-664. | Zbl 0215.48705

[00009] [10] J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), 359-365. | Zbl 0326.47028

[00010] [11] J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators II, Acta Sci. Math. (Szeged) 53 (1989), 153-177. | Zbl 0698.47003

[00011] [12] J. Stochel and F. H. Szafraniec, A few assorted questions about unbounded subnormal operators, Univ. Iagel. Acta Math. 28 (1991), 163-170. | Zbl 0748.47015

[00012] [13] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970. | Zbl 0201.45003

[00013] [14] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, Berlin, 1980.