We study mild n times integrated C-existence families without the assumption of exponential boundedness. We present several equivalent conditions for these families. Hille-Yosida type necessary and sufficient conditions are given for the exponentially bounded case.
@article{bwmeta1.element.bwnjournal-article-smv112i3p251bwm, author = {Shen Wang}, title = {Mild integrated C-existence families}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {251-266}, zbl = {0819.47054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p251bwm} }
Wang, Shen. Mild integrated C-existence families. Studia Mathematica, Tome 113 (1995) pp. 251-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p251bwm/
[00000] [1] W. Arendt, Vector valued Laplaced transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. | Zbl 0637.44001
[00001] [2] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223-248.
[00002] [3] F. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181-208. | Zbl 0651.47026
[00003] [4] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985. | Zbl 0592.47034
[00004] [5] M. Hieber and H. Kellerman, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180. | Zbl 0689.47014
[00005] [6] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal., to appear.
[00006] [7] R. deLaubenfels, Integrated semigroups, C-semigroups and the abstract Cauchy problem, Semigroup Forum 41 (1990), 83-95. | Zbl 0717.47014
[00007] [8] R. deLaubenfels, Existence and uniqueness families for the abstract Cauchy problem, J. London Math. Soc. (2) 44 (1991), 310-338. | Zbl 0766.47011
[00008] [9] R. deLaubenfels, C-semigroups and strongly continuous semigroups, Israel J. Math., to appear. | Zbl 0803.47034
[00009] [10] R. deLaubenfels, Automatic well-posedness, preprint.
[00010] [11] I. Miyadera, A generalization of the Hille-Yosida theorem, Proc. Japan Acad. Ser. A 64 (1988), 223-226. | Zbl 0683.47027
[00011] [12] I. Miyadera and N. Tanaka, Exponentially bounded C-semigroups and generation of semigroups, J. Math. Anal. Appl. 143 (1989), 358-378. | Zbl 0697.47039
[00012] [13] I. Miyadera and N. Tanaka, Exponentially bounded C-semigroups and integrated semigroups, Tokyo J. Math. 12 (1989), 99-115. | Zbl 0702.47028
[00013] [14] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111-157. | Zbl 0675.47030
[00014] [15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[00015] [16] N. Tanaka, On the exponentially bounded C-semigroups, Tokyo J. Math. 10 (1987), 107-117. | Zbl 0631.47029
[00016] [17] H. R. Thieme, "Integrated semigroups" and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (1990), 416-447. | Zbl 0738.47037