A bounded closed convex set K in a Banach space X is said to have quasi-normal structure if each bounded closed convex subset H of K for which diam(H) > 0 contains a point u for which ∥u-x∥ < diam(H) for each x ∈ H. It is shown that if the convex sets on the unit sphere in X satisfy this condition (which is much weaker than the assumption that convex sets on the unit sphere are separable), then relative to various weak topologies, the unit ball in X is compact whenever it is countably compact.
@article{bwmeta1.element.bwnjournal-article-smv112i3p243bwm, author = {W. Kirk}, title = {Compactness and countable compactness in weak topologies}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {243-250}, zbl = {0824.46020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p243bwm} }
Kirk, W. Compactness and countable compactness in weak topologies. Studia Mathematica, Tome 113 (1995) pp. 243-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p243bwm/
[00000] [1] T. Büber and W. A. Kirk, Constructive aspects of fixed point theory for nonexpansive mappings, to appear. | Zbl 0844.47031
[00001] [2] T. Büber and W. A. Kirk, Convexity structures and the existence of minimal sets, preprint. | Zbl 0866.54003
[00002] [3] H. H. Corson and J. Lindenstrauss, On weakly compact subsets of Banach spaces, Proc. Amer. Math. Soc. 17 (1966), 407-412. | Zbl 0186.44703
[00003] [4] M. M. Day, R. C. James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051-1059. | Zbl 0215.48202
[00004] [5] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys Pure Appl. Math. 63, Longman, Essex, 1993. | Zbl 0782.46019
[00005] [6] D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. (2) 25 (1982), 139-144. | Zbl 0453.46017
[00006] [7] G. Godefroy, Existence and uniqueness of isometric preduals: A survey, in: Banach Space Theory, B. L. Lin (ed.), Contemp. Math. 85, Amer. Math. Soc., Providence, R.I., 1989, 131-194. | Zbl 0674.46010
[00007] [8] G. Godefroy and N. Kalton, The ball topology and its applications, ibid., 195-237.
[00008] [9] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990. | Zbl 0708.47031
[00009] [10] J. L. Kelley, General Topology, van Nostrand, Princeton, 1955.
[00010] [11] M. A. Khamsi, Étude de la propriété du point fixe dans les espaces de Banach et les espaces métriques, thèse de doctorat de l'Université Paris VI, 1987. | Zbl 0611.46018
[00011] [12] M. A. Khamsi, On metric spaces with uniform normal structure, Proc. Amer. Math. Soc. 106 (1989), 723-726. | Zbl 0671.47052
[00012] [13] M. A. Khamsi and D. Misane, Compactness of convexity structures in metric spaces, to appear.
[00013] [14] W. A. Kirk, Nonexpansive mappings and normal structure in Banach spaces, in: Proc. Research Workshop on Banach Space Theory, B. L. Lin (ed.), Univ. of Iowa, 1981, 113-127.
[00014] [15] W. A. Kirk, Nonexpansive mappings in metric and Banach spaces, Rend. Sem. Mat. Fis. Milano 61 (1981), 133-144. | Zbl 0519.54029
[00015] [16] J. P. Penot, Fixed point theorems without convexity, Bull. Soc. Math. France Mém. 60 (1979), 129-152. | Zbl 0454.47044
[00016] [17] P. Soardi, Struttura quasi normale e teoremi di punto unito, Rend. Istit. Mat. Univ. Trieste 4 (1972), 105-114. | Zbl 0246.47066
[00017] [18] S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173-180. | Zbl 0214.12701
[00018] [19] C. S. Wong, Close-to-normal structure and its applications, J. Funct. Anal. 16 (1974), 353-358. | Zbl 0281.46015
[00019] [20] V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971). | Zbl 0231.46036