The following result is proved: Let denote a power series space of infinite or of finite type, and equip with its canonical fundamental system of norms, R ∈ 0,∞, 1 ≤ p < ∞. Then a tamely exact sequence (⁎) exists iff α is strongly stable, i.e. , and a linear-tamely exact sequence (*) exists iff α is uniformly stable, i.e. there is A such that for all K. This result extends a theorem of Vogt and Wagner which states that a topologically exact sequence (*) exists iff α is stable, i.e. .
@article{bwmeta1.element.bwnjournal-article-smv112i3p229bwm, author = {Markus Poppenberg and Dietmar Vogt}, title = {Construction of standard exact sequences of power series spaces}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {229-241}, zbl = {0822.46003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p229bwm} }
Poppenberg, Markus; Vogt, Dietmar. Construction of standard exact sequences of power series spaces. Studia Mathematica, Tome 113 (1995) pp. 229-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p229bwm/
[00000] [1] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. | Zbl 0499.58003
[00001] [2] H. Külkens, Gleichmäßig shiftstabile Potenzreihenräume, Diplomarbeit, Wuppertal, 1991.
[00002] [3] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer, 1972.
[00003] [4] M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z., to appear.
[00004] [5] M. Poppenberg and D. Vogt, Tame splitting theory for Fréchet-Hilbert spaces, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. M. Ruess and D. Vogt (eds.), Lecture Notes in Pure and Appl. Math. 150, Marcel Dekker, New York, 1994, 475-492. | Zbl 0815.46003
[00005] [6] D. Vogt, On the characterization of subspaces and quotient spaces of stable power series spaces of finite type, Arch. Math. (Basel) 50 (1988), 463-469. | Zbl 0655.46008
[00006] [7] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301. | Zbl 0512.46003
[00007] [8] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270. | Zbl 0539.46009
[00008] [9] D. Vogt, Tame spaces and power series spaces, Math. Z. 196 (1987), 523-536. | Zbl 0622.46004
[00009] [10] D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208. | Zbl 0724.46007
[00010] [11] D. Vogt and M. J. Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ, Studia Math. 70 (1981), 63-80. | Zbl 0402.46008