A rigid space is a topological vector space whose endomorphisms are all simply scalar multiples of the identity map. The first complete rigid space was published in 1981 in [2]. Clearly a rigid space is a trivial-dual space, and admits no compact endomorphisms. In this paper a modification of the original construction results in a rigid space which is, however, the domain space of a compact operator, answering a question that was first raised soon after the existence of complete rigid spaces was demonstrated.
@article{bwmeta1.element.bwnjournal-article-smv112i3p213bwm, author = {Paul Sisson}, title = {A rigid space admitting compact operators}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {213-228}, zbl = {0834.46005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p213bwm} }
Sisson, Paul. A rigid space admitting compact operators. Studia Mathematica, Tome 113 (1995) pp. 213-228. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i3p213bwm/
[00000] [1] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-Space Sampler, Cambridge Univ. Press, Cambridge, 1984.
[00001] [2] N. J. Kalton and J. W. Roberts, A rigid subspace of , Trans. Amer. Math. Soc. 266 (1981), 645-654. | Zbl 0484.46004
[00002] [3] N. J. Kalton and J. H. Shapiro, An F-space with trivial dual and non-trivial compact endomorphisms, Israel J. Math. 20 (1975), 282-291. | Zbl 0305.46008
[00003] [4] D. Pallaschke, The compact endomorphisms of the metric linear spaces , Studia Math. 47 (1973), 123-133. | Zbl 0256.46030
[00004] [5] P. D. Sisson, Compact operators on trivial-dual spaces, PhD thesis, Univ. of South Carolina, Columbia, South Carolina, 1993.
[00005] [6] P. Turpin, Opérateurs linéaires entre espaces d'Orlicz non localement convexes, Studia Math. 46 (1973), 153-165. | Zbl 0254.46022
[00006] [7] L. Waelbroeck, A rigid topological vector space, ibid. 59 (1977), 227-234. | Zbl 0344.46008