We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when .
@article{bwmeta1.element.bwnjournal-article-smv112i2p127bwm, author = {Sijue Wu}, title = {$\omega$-Calder\'on-Zygmund operators}, journal = {Studia Mathematica}, volume = {113}, year = {1995}, pages = {127-139}, zbl = {0817.42010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i2p127bwm} }
Wu, Sijue. ω-Calderón-Zygmund operators. Studia Mathematica, Tome 113 (1995) pp. 127-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i2p127bwm/
[00000] [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, New York, 1976. | Zbl 0344.46071
[00001] [2] D. L. Burkholder, Martingale theory and harmonic analysis in Euclidean spaces, in: Proc. Sympos. Pure Math. 35, Part 2, Amer. Math. Soc., 1979, 283-301. | Zbl 0417.60055
[00002] [3] R. Coifman, G. David, Y. Meyer and S. Semmes, ω-Calderón-Zygmund operators, in: Lecture Notes in Math. 1384, Springer, 1989, 132-145.
[00003] [4] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. | Zbl 0567.47025
[00004] [5] J. Garcí a-Cuerva, Weighted -spaces, Dissertationes Math. 162 (1979).
[00005] [6] J. Garcí a-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
[00006] [7] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer, 1983. | Zbl 0508.42021
[00007] [8] T. H. Wolff, A note on interpolation spaces, in: Lecture Notes in Math. 908, Springer, 1981, 199-204.
[00008] [9] S. Wu, A wavelet characterization for weighted Hardy spaces, Rev. Mat. Iberoamericana 8 (1992), 329-349. | Zbl 0769.42011