Commutativity of compact selfadjoint operators
Greiner, G. ; Ricker, W.
Studia Mathematica, Tome 113 (1995), p. 109-125 / Harvested from The Polish Digital Mathematics Library

The relationship between the joint spectrum γ(A) of an n-tuple A=(A1,...,An) of selfadjoint operators and the support of the corresponding Weyl calculus T(A) : f ↦ f(A) is discussed. It is shown that one always has γ(A) ⊂ supp (T(A)). Moreover, when the operators are compact, equality occurs if and only if the operators Aj mutually commute. In the non-commuting case the equality fails badly: While γ(A) is countable, supp(T(A)) has to be an uncountable set. An example is given showing that, for non-compact operators, coincidence of γ(A) and supp (T(A)) no longer implies commutativity of the set Ai .

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216141
@article{bwmeta1.element.bwnjournal-article-smv112i2p109bwm,
     author = {G. Greiner and W. Ricker},
     title = {Commutativity of compact selfadjoint operators},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {109-125},
     zbl = {0817.47004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i2p109bwm}
}
Greiner, G.; Ricker, W. Commutativity of compact selfadjoint operators. Studia Mathematica, Tome 113 (1995) pp. 109-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i2p109bwm/

[00000] [1] R. F. V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240-267. | Zbl 0191.13403

[00001] [2] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, 1989. | Zbl 0682.43001

[00002] [3] G. Greiner and W. J. Ricker, Joint spectral sets and commutativity of systems of (2× 2) selfadjoint matrices, Linear and Multilinear Algebra 36 (1993), 47-58. | Zbl 0794.15007

[00003] [4] B. R. F. Jefferies and W. J. Ricker, Commutativity for systems of (2×2) selfadjoint matrices, ibid. 35 (1993), 107-114. | Zbl 0796.15015

[00004] [5] A. McIntosh and A. J. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), 421-439. | Zbl 0694.47015

[00005] [6] A. McIntosh, A. J. Pryde and W. J. Ricker, Comparison of joint spectra for certain classes of commuting operators, Studia Math. 88 (1988), 23-36. | Zbl 0665.47002

[00006] [7] A. McIntosh, A. J. Pryde and W. J. Ricker, Systems of operator equations and perturbation of spectral subspaces of commuting operators, Michigan Math. J. 35 (1988), 43-65. | Zbl 0657.47021

[00007] [8] A. J. Pryde, A non-commutative joint spectral theory, Proc. Centre Math. Anal. (Canberra) 20 (1988), 153-161. | Zbl 0705.47013

[00008] [9] A. J. Pryde, Inequalities for exponentials in Banach algebras, Studia Math. 100 (1991), 87-94. | Zbl 0787.47005

[00009] [10] W. J. Ricker, The Weyl calculus and commutativity for systems of selfadjoint matrices, Arch. Math. (Basel) 61 (1993), 173-176. | Zbl 0819.47005

[00010] [11] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, 1974. | Zbl 0296.47023

[00011] [12] M. E. Taylor, Functions of several selfadjoint operators, Proc. Amer. Math. Soc. 19 (1968), 91-98. | Zbl 0164.16604