Precompactness in the uniform ergodic theory
Lyubich, Yu. ; Zemánek, J.
Studia Mathematica, Tome 108 (1994), p. 89-97 / Harvested from The Polish Digital Mathematics Library

We characterize the Banach space operators T whose arithmetic means n-1(I+T+...+Tn-1)n1 form a precompact set in the operator norm topology. This occurs if and only if the sequence n-1Tnn1 is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216140
@article{bwmeta1.element.bwnjournal-article-smv112i1p89bwm,
     author = {Yu. Lyubich and J. Zem\'anek},
     title = {Precompactness in the uniform ergodic theory},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {89-97},
     zbl = {0817.47014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p89bwm}
}
Lyubich, Yu.; Zemánek, J. Precompactness in the uniform ergodic theory. Studia Mathematica, Tome 108 (1994) pp. 89-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p89bwm/

[00000] [1] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974. | Zbl 0299.46062

[00001] [2] N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. | Zbl 0063.01185

[00002] [3] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, New York, 1958. | Zbl 0084.10402

[00003] [4] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. | Zbl 67.0407.02

[00004] [5] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.

[00005] [6] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. 18 (1968), 428-438. | Zbl 0162.18601

[00006] [7] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland, Amsterdam, 1974. | Zbl 0288.46043

[00007] [8] J. J. Koliha, Power convergence and pseudoinverses of operators in Banach spaces, J. Math. Anal. Appl. 48 (1974), 446-469. | Zbl 0292.47003

[00008] [9] J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974), 467-473. | Zbl 0265.46049

[00009] [10] H. Li, Equivalent conditions for the convergence of a sequence Bnn=1, Acta Math. Sinica 29 (1986), 285-288 (in Chinese).

[00010] [11] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340. | Zbl 0252.47004

[00011] [12] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.

[00012] [13] H. C. Rönnefarth, Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, Berlin, 1993.

[00013] [14] A. Świech, Spectral characterization of operators with precompact orbit, Studia Math. 96 (1990), 277-282; 97 (1991), 266. | Zbl 0725.47003

[00014] [15] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980. | Zbl 0501.46003

[00015] [16] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Warszawa, 1994, 369-385. | Zbl 0822.47005