The paper deals mostly with spectral properties of unbounded hyponormal operators. Some nontrivial examples of such operators are given.
@article{bwmeta1.element.bwnjournal-article-smv112i1p75bwm, author = {J. Janas}, title = {On unbounded hyponormal operators III}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {75-82}, zbl = {0820.47025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p75bwm} }
Janas, J. On unbounded hyponormal operators III. Studia Mathematica, Tome 108 (1994) pp. 75-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p75bwm/
[00000] [1] J. Janas, On unbounded hyponormal operators, Ark. Mat. 27 (1989), 273-281. | Zbl 0684.47020
[00001] [2] J. Janas, On unbounded hyponormal operators II, Integral Equations Operator Theory 15 (1992), 470-478. | Zbl 0772.47005
[00002] [3] T. Kato, Positive commutators i[f(P),g(Q)], J. Funct. Anal. 96 (1991), 117-129. | Zbl 0751.47020
[00003] [4] C. R. Putnam, The spectra of unbounded hyponormal operators, Proc. Amer. Math. Soc. 31 (1972), 458-464. | Zbl 0241.47021
[00004] [5] C. R. Putnam, Spectra of polar factors of hyponormal operators, Trans. Amer. Math. Soc. 188 (1974), 419-428. | Zbl 0254.47040
[00005] [6] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1972. | Zbl 0242.46001
[00006] [7] J. B. Stochel, Subnormality and generalized commutation relations, Glasgow Math. J. 30 (1988), 259-262.
[00007] [8] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, 1980.
[00008] [9] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser, 1983. | Zbl 0523.47012