We characterize the UMD-property of a Banach space X by sequences of ideal norms associated with trigonometric orthonormal systems. The asymptotic behavior of those numerical parameters can be used to decide whether X is a UMD-space. Moreover, if this is not the case, we obtain a measure that shows how far X is from being a UMD-space. The main result is that all described sequences are not only simultaneously bounded but are also asymptotically equivalent.
@article{bwmeta1.element.bwnjournal-article-smv112i1p59bwm, author = {J\"org Wenzel}, title = {Ideal norms and trigonometric orthonormal systems}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {59-74}, zbl = {0824.46012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p59bwm} }
Wenzel, Jörg. Ideal norms and trigonometric orthonormal systems. Studia Mathematica, Tome 108 (1994) pp. 59-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p59bwm/
[00000] [1] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 22 (1983), 163-168. | Zbl 0533.46008
[00001] [2] D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, in: Probability and Analysis (Varenna, Italy, 1985), Lecture Notes in Math. 1206, Springer, 1986, 61-108.
[00002] [3] M. Defant, Zur vektorwertigen Hilberttransformation, Ph.D. thesis, Christian-Albrechts-Universität Kiel, 1986. | Zbl 0614.46060
[00003] [4] N. Dinculeanu, Vector Measures, Deutscher Verlag der Wiss., Berlin, 1966.
[00004] [5] A. Pietsch, Operator Ideals, Deutscher Verlag der Wiss., Berlin, 1978.
[00005] [6] A. Pietsch, Eigenvalues and s-numbers, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987. | Zbl 0615.47019
[00006] [7] A. Pietsch and J. Wenzel, Orthogonal systems and geometry of Banach spaces, in preparation. | Zbl 0919.46001
[00007] [8] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, Cambridge, 1959. | Zbl 0085.05601