Characterization of strict C*-algebras
Aristov, O.
Studia Mathematica, Tome 108 (1994), p. 51-58 / Harvested from The Polish Digital Mathematics Library

A Banach algebra A is called strict if the product morphism is continuous with respect to the weak norm in A ⊗ A. The following result is proved: A C*-algebra is strict if and only if all its irreducible representations are finite-dimensional and their dimensions are bounded.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216136
@article{bwmeta1.element.bwnjournal-article-smv112i1p51bwm,
     author = {O. Aristov},
     title = {Characterization of strict C*-algebras},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {51-58},
     zbl = {0829.46042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p51bwm}
}
Aristov, O. Characterization of strict C*-algebras. Studia Mathematica, Tome 108 (1994) pp. 51-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p51bwm/

[00000] [1] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.

[00001] [2] A. Grothendieck, Produits tensorielles et espaces nucléaires, Mem. Amer. Math. Soc. 166 (1955).

[00002] [3] A. Ya. Helemskiĭ, Banach and Locally Convex Algebras, Clarendon Press, Oxford, 1993.

[00003] [4] R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273-276. | Zbl 0078.11502

[00004] [5] E. Sh. Kurmakaeva, On the strictness of algebras and modules, preprint, Moscow University, No. 1548-B92, VINITI, 1992 (in Russian).

[00005] [6] N. Th. Varopoulos, Some remarks on Q-algebras, Ann. Inst. Fourier (Grenoble) 22 (4) (1972), 1-11. | Zbl 0235.46074