We discuss the problem of characterizing the possible asymptotic behaviour of the norm of the iterates of a bounded linear operator between two Banach spaces. In particular, given an increasing sequence of positive numbers tending to infinity, we construct Banach spaces such that the norm of the iterates of a suitable multiplication operator between these spaces assumes (or exceeds) the values of this sequence.
@article{bwmeta1.element.bwnjournal-article-smv112i1p1bwm, author = {Anatoli\u\i\ Antonevich and J\"urgen Appell and Petr Zabre\u\i ko}, title = {Some remarks on the asymptotic behaviour of the iterates of a bounded linear operator}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {1-11}, zbl = {0821.47020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p1bwm} }
Antonevich, Anatoliĭ; Appell, Jürgen; Zabreĭko, Petr. Some remarks on the asymptotic behaviour of the iterates of a bounded linear operator. Studia Mathematica, Tome 108 (1994) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p1bwm/
[00000] [1] J. Appell and P. P. Zabreĭko, On analyticity conditions for the superposition operator in ideal function spaces, Boll. Un. Mat. Ital. 4-C (1985), 279-295. | Zbl 0583.47057
[00001] [2] J. Appell and P. P. Zabreĭko, Analytic superposition operators, Dokl. Akad. Nauk BSSR 29 (1985), 878-881 (in Russian). | Zbl 0591.47048
[00002] [3] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990. | Zbl 0708.47031
[00003] [4] P. R. Halmos, Lectures in Ergodic Theory, Chelsea, New York, 1956.
[00004] [5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
[00005] [6] M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Fizmatgiz, Moscow, 1958 (in Russian); English transl.: Noordhoff, Groningen, 1961.
[00006] [7] M. A. Krasnosel'skiĭ and P. P. Zabreĭko, Geometrical Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (in Russian); English transl.: Springer, Berlin, 1984.
[00007] [8] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland, Amsterdam, 1974.
[00008] [9] M. Novak, Unions and intersections of families of spaces, Math. Nachr. 136 (1988), 241-251. | Zbl 0667.46021
[00009] [10] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, M. Dekker, New York, 1991.
[00010] [11] A. Schönhage, Approximationstheorie, de Gruyter, Berlin, 1971.
[00011] [12] P. P. Zabreĭko, Ideal function spaces, Yaroslavl. Gos. Univ. Vestnik 8 (1974), 12-52 (in Russian).
[00012] [13] P. P. Zabreĭko, Error estimates for successive approximations and spectral properties of linear operators, Numer. Funct. Anal. Optim. 11 (1990), 823-838.
[00013] [14] P. P. Zabreĭko, A. I. Koshelev, M. A. Krasnosel'skiĭ, S. G. Mikhlin, L. S. Rakovshchik and V. Ya. Stetsenko, Integral Equations, Nauka, Moscow, 1968 (in Russian); English transl.: Noordhoff, Leyden, 1975.
[00014] [15] E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer, Berlin, 1990. | Zbl 0684.47029
[00015] [16] K. Zhu, Operator Theory in Function Spaces, M. Dekker, New York, 1990.