Spectral decompositions and harmonic analysis on UMD spaces
Berkson, Earl ; Gillespie, T.
Studia Mathematica, Tome 108 (1994), p. 13-49 / Harvested from The Polish Digital Mathematics Library

We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for LXp to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216134
@article{bwmeta1.element.bwnjournal-article-smv112i1p13bwm,
     author = {Earl Berkson and T. Gillespie},
     title = {Spectral decompositions and harmonic analysis on UMD spaces},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {13-49},
     zbl = {0823.42004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p13bwm}
}
Berkson, Earl; Gillespie, T. Spectral decompositions and harmonic analysis on UMD spaces. Studia Mathematica, Tome 108 (1994) pp. 13-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p13bwm/

[00000] [1] N. Asmar, E. Berkson and T. A. Gillespie, Transferred bounds for square functions, Houston J. Math. 17 (1991), 525-550. | Zbl 0784.43003

[00001] [2] N. Asmar, E. Berkson and T. A. Gillespie, Spectral integration of Marcinkiewicz multipliers, Canad. J. Math. 45 (1993), 470-482. | Zbl 0817.42005

[00002] [3] E. Berkson, J. Bourgain and T. A. Gillespie, On the almost everywhere convergence of ergodic averages for power-bounded operators on Lp-subspaces, Integral Equations Operator Theory 14 (1991), 678-715. | Zbl 0786.47003

[00003] [4] E. Berkson and T. A. Gillespie, Fourier series criteria for operator decomposability, ibid. 9 (1986), 767-789. | Zbl 0607.47026

[00004] [5] E. Berkson and T. A. Gillespie, Stechkin's theorem, transference, and spectral decompositions, J. Funct. Anal. 70 (1987), 140-170. | Zbl 0607.47027

[00005] [6] E. Berkson and T. A. Gillespie, Spectral decompositions and vector-valued transference, in: Analysis at Urbana II (Proceedings of Special Year in Modern Analysis at the Univ. of Ill., 1986-87), London Math. Soc. Lecture Note Ser. 138, Cambridge Univ. Press, Cambridge, 1989, 22-51.

[00006] [7] E. Berkson and T. A. Gillespie, Transference and extension of Fourier multipliers for Lp(), J. London Math. Soc. (2) 41 (1990), 472-488. | Zbl 0693.42009

[00007] [8] E. Berkson, T. A. Gillespie and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489-517. | Zbl 0609.47042

[00008] [9] E. Berkson, T. A. Gillespie and P. S. Muhly, Generalized analyticity in UMD spaces, Ark. Mat. 27 (1989), 1-14.

[00009] [10] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, ibid. 21 (1983), 163-168. | Zbl 0533.46008

[00010] [11] J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, in: Probability Theory and Harmonic Analysis (Mini-Conference on Probability and Harmonic Analysis, Cleveland, 1983), J.-A. Chao and W. A. Woyczyński (eds.), Monographs and Textbooks in Pure and Appl. Math. 98, Marcel Dekker, New York, 1986, 1-19.

[00011] [12] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Proc. Conf. on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981), W. Beckner et al. (eds.), Wadsworth, Belmont, Calif., 1983, 270-286.

[00012] [13] H. R. Dowson, Spectral Theory of Linear Operators, London Math. Soc. Monographs 12, Academic Press, New York, 1978. | Zbl 0384.47001

[00013] [14] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergeb. Math. Grenzgeb. 90, Springer, Berlin, 1977.

[00014] [15] T. A. Gillespie, Commuting well-bounded operators on Hilbert spaces, Proc. Edinburgh Math. Soc. (2) 20 (1976), 167-172. | Zbl 0334.47025

[00015] [16] J.-P. Kahane, Sur les sommes vectorielles ±un, C. R. Acad. Sci. Paris 259 (1964), 2577-2580.

[00016] [17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I (Sequence Spaces), Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. | Zbl 0362.46013

[00017] [18] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II (Function Spaces), Ergeb. Math. Grenzgeb. 97, Springer, Berlin, 1979. | Zbl 0403.46022

[00018] [19] M. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton University Press, 1981. | Zbl 0474.43004

[00019] [20] D. J. Ralph, Semigroups of well-bounded operators and multipliers, Thesis, Univ. of Edinburgh, 1977.