We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.
@article{bwmeta1.element.bwnjournal-article-smv112i1p13bwm, author = {Earl Berkson and T. Gillespie}, title = {Spectral decompositions and harmonic analysis on UMD spaces}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {13-49}, zbl = {0823.42004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p13bwm} }
Berkson, Earl; Gillespie, T. Spectral decompositions and harmonic analysis on UMD spaces. Studia Mathematica, Tome 108 (1994) pp. 13-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i1p13bwm/
[00000] [1] N. Asmar, E. Berkson and T. A. Gillespie, Transferred bounds for square functions, Houston J. Math. 17 (1991), 525-550. | Zbl 0784.43003
[00001] [2] N. Asmar, E. Berkson and T. A. Gillespie, Spectral integration of Marcinkiewicz multipliers, Canad. J. Math. 45 (1993), 470-482. | Zbl 0817.42005
[00002] [3] E. Berkson, J. Bourgain and T. A. Gillespie, On the almost everywhere convergence of ergodic averages for power-bounded operators on -subspaces, Integral Equations Operator Theory 14 (1991), 678-715. | Zbl 0786.47003
[00003] [4] E. Berkson and T. A. Gillespie, Fourier series criteria for operator decomposability, ibid. 9 (1986), 767-789. | Zbl 0607.47026
[00004] [5] E. Berkson and T. A. Gillespie, Stechkin's theorem, transference, and spectral decompositions, J. Funct. Anal. 70 (1987), 140-170. | Zbl 0607.47027
[00005] [6] E. Berkson and T. A. Gillespie, Spectral decompositions and vector-valued transference, in: Analysis at Urbana II (Proceedings of Special Year in Modern Analysis at the Univ. of Ill., 1986-87), London Math. Soc. Lecture Note Ser. 138, Cambridge Univ. Press, Cambridge, 1989, 22-51.
[00006] [7] E. Berkson and T. A. Gillespie, Transference and extension of Fourier multipliers for , J. London Math. Soc. (2) 41 (1990), 472-488. | Zbl 0693.42009
[00007] [8] E. Berkson, T. A. Gillespie and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489-517. | Zbl 0609.47042
[00008] [9] E. Berkson, T. A. Gillespie and P. S. Muhly, Generalized analyticity in UMD spaces, Ark. Mat. 27 (1989), 1-14.
[00009] [10] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, ibid. 21 (1983), 163-168. | Zbl 0533.46008
[00010] [11] J. Bourgain, Vector-valued singular integrals and the -BMO duality, in: Probability Theory and Harmonic Analysis (Mini-Conference on Probability and Harmonic Analysis, Cleveland, 1983), J.-A. Chao and W. A. Woyczyński (eds.), Monographs and Textbooks in Pure and Appl. Math. 98, Marcel Dekker, New York, 1986, 1-19.
[00011] [12] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Proc. Conf. on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981), W. Beckner et al. (eds.), Wadsworth, Belmont, Calif., 1983, 270-286.
[00012] [13] H. R. Dowson, Spectral Theory of Linear Operators, London Math. Soc. Monographs 12, Academic Press, New York, 1978. | Zbl 0384.47001
[00013] [14] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergeb. Math. Grenzgeb. 90, Springer, Berlin, 1977.
[00014] [15] T. A. Gillespie, Commuting well-bounded operators on Hilbert spaces, Proc. Edinburgh Math. Soc. (2) 20 (1976), 167-172. | Zbl 0334.47025
[00015] [16] J.-P. Kahane, Sur les sommes vectorielles , C. R. Acad. Sci. Paris 259 (1964), 2577-2580.
[00016] [17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I (Sequence Spaces), Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. | Zbl 0362.46013
[00017] [18] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II (Function Spaces), Ergeb. Math. Grenzgeb. 97, Springer, Berlin, 1979. | Zbl 0403.46022
[00018] [19] M. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton University Press, 1981. | Zbl 0474.43004
[00019] [20] D. J. Ralph, Semigroups of well-bounded operators and multipliers, Thesis, Univ. of Edinburgh, 1977.