We investigate conditions under which the projective and the injective topologies coincide on the tensor product of two Köthe echelon or coechelon spaces. A major tool in the proof is the characterization of the επ-continuity of the tensor product of two diagonal operators from to . Several sharp forms of this result are also included.
@article{bwmeta1.element.bwnjournal-article-smv111i3p263bwm, author = {J. Bonet and A. Defant and A. Peris and M. Ramanujan}, title = {Coincidence of topologies on tensor products of K\"othe echelon spaces}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {263-281}, zbl = {0805.46007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i3p263bwm} }
Bonet, J.; Defant, A.; Peris, A.; Ramanujan, M. Coincidence of topologies on tensor products of Köthe echelon spaces. Studia Mathematica, Tome 108 (1994) pp. 263-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i3p263bwm/
[00000] [1] V. Bartík, K. John and J. Korbaš, Tensor products of operators and Horn's inequality, in: Oper. Theory: Adv. Appl. 14, Birkhäuser, Basel, 1984, 39-46. | Zbl 0553.47018
[00001] [2] K. D. Bierstedt und R. Meise, Induktive Limiten gewichteter Räume stetiger und holomorpher Funktionen, J. Reine Angew. Math. 282 (1976), 186-220. | Zbl 0318.46034
[00002] [3] K. D. Bierstedt, R. Meise and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160. | Zbl 0599.46026
[00003] [4] K. D. Bierstedt, R. Meise and W. H. Summers, Köthe sets and Köthe sequence spaces, in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Stud. 71, North-Holland, 1982, 27-91. | Zbl 0504.46007
[00004] [5] B. Carl, B. Maurey und J. Puhl, Grenzordnungen von absolut-(r, p)-summierenden Operatoren, Math. Nachr. 82 (1978), 205-218. | Zbl 0407.47010
[00005] [6] A. Defant, Barrelledness and nuclearity, Arch. Math. (Basel) 44 (1985), 168-170. | Zbl 0536.46001
[00006] [7] A. Defant and K. Floret, Topological tensor products and the approximation property of locally convex spaces, Bull Soc. Roy. Sci. Liège 58 (1989), 29-51. | Zbl 0677.46057
[00007] [8] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, 1993. | Zbl 0774.46018
[00008] [9] A. Defant and V. Mascioni, Limit orders of ε-π continuous operators, Math. Nachr. 145 (1990), 337-344. | Zbl 0726.47011
[00009] [10] A. Defant and L. A. Moraes, On unconditional bases in spaces of holomorphic functions in infinite dimensions, Arch. Math. (Basel) 56 (1991), 163-173. | Zbl 0706.46028
[00010] [11] S. Dineen and R. M. Timoney, Absolute bases, tensor products and a theorem of Bohr, Studia Math. 94 (1989), 227-234. | Zbl 0713.46005
[00011] [12] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[00012] [13] H. Jarchow, Locally Convex Spaces, Teubner, 1981. | Zbl 0466.46001
[00013] [14] H. Jarchow and K. John, On the equality of injective and projective tensor products, Czechoslovak Math. J. 38 (1988), 464-472. | Zbl 0674.46044
[00014] [15] H. Jarchow and K. John, Bilinear forms and nuclearity, preprint, 1992. | Zbl 0854.46002
[00015] [16] K. John, Counterexample to a conjecture of Grothendieck, Math. Ann. 265 (1983), 169-179. | Zbl 0506.46053
[00016] [17] K. John, On the compact non-nuclear operator problem, ibid. 287 (1990), 509-514. | Zbl 0687.47012
[00017] [18] G. Köthe, Topological Vector Spaces I, II, Springer, 1969, 1979. | Zbl 0179.17001
[00018] [19] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, North-Holland, 1987. | Zbl 0614.46001
[00019] [20] A. Pietsch, Nuclear Locally Convex Spaces, Springer, 1972.
[00020] [21] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., 1978.
[00021] [22] A. Pietsch, Eigenvalues and s-Numbers, Cambridge University Press, 1987.
[00022] [23] G. Pisier, Counterexamples to a conjecture of Grothendieck, Acta Math. 151 (1983), 180-208.
[00023] [24] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., 1986.