Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space to be norm convergent (resp. relatively norm compact), thus extending the known results for . Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in . It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence. Other implications between several modes of convergence in are also studied.
@article{bwmeta1.element.bwnjournal-article-smv111i3p241bwm, author = {Erik Balder and Maria Girardi and Vincent Jalby}, title = {From weak to strong types of $L^{1}\_{E}$-convergence by the Bocce criterion}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {241-262}, zbl = {0809.28006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i3p241bwm} }
Balder, Erik; Girardi, Maria; Jalby, Vincent. From weak to strong types of $L^{1}_{E}$-convergence by the Bocce criterion. Studia Mathematica, Tome 108 (1994) pp. 241-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i3p241bwm/
[00000] [ACV] A. Amrani, C. Castaing et M. Valadier, Méthodes de troncature appliquées à des problèmes de convergence faible ou forte dans , Arch. Rational Mech. Anal. 117 (1992), 167-191.
[00001] [B1] E. J. Balder, On weak convergence implying strong convergence in -spaces, Bull. Austral. Math. Soc. 33 (1986), 363-368. | Zbl 0579.46018
[00002] [B2] E. J. Balder, On equivalence of strong and weak convergence in -spaces under extreme point conditions, Israel J. Math. 75 (1991), 1-23.
[00003] [B3] E. J. Balder, From weak to strong -convergence by an oscillation restriction criterion of BMO type, preprint No. 666, Dept. of Math., University of Utrecht, 1991.
[00004] [B4] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-598. | Zbl 0549.49005
[00005] [B5] E. J. Balder, On Prohorov's theorem for transition probabilities, Sém. Anal. Convexe 19 (1989), 9.1-9.11. | Zbl 0732.60007
[00006] [BH1] J. Batt and W. Hiermeyer, Weak compactness in the space of Bochner integrable functions, unpublished manuscript, 1980.
[00007] [BH2] J. Batt and W. Hiermeyer, On compactness in in the weak topology and in the topology , Math. Z. 182 (1983), 409-423. | Zbl 0491.46010
[00008] [BS] J. Batt and G. Schlüchtermann, Eberlein compacts in , Studia Math. 83 (1986), 239-250. | Zbl 0555.46014
[00009] [BD] J. K. Brooks and N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions, Adv. in Math. 24 (1977), 172-188. | Zbl 0354.46026
[00010] [C1] C. Castaing, Un résultat de compacité lié à la propriété des ensembles Dunford-Pettis dans , Sém. Anal. Convexe 9 (1979), 17.1-17.7.
[00011] [C2] C. Castaing, Sur la décomposition de Slaby. Applications aux problèmes de convergences en probabilités. Economie mathématique. Théorie du contrôle. Minimisation, Sém. Anal. Convexe 19 (1989), 3.1-3.35.
[00012] [CV] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977. | Zbl 0346.46038
[00013] [Da] B. Dawson, Convergence of conditional expectation operators and the compact range property, Ph.D. dissertation, University of North Texas, 1992.
[00014] [D1] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, New York, 1984.
[00015] [D2] J. Diestel, Uniform integrability: an introduction, School on Measure Theory and Real Analysis, Grado (Italy), October 14-25, 1991, Rend. Istit. Mat. Univ. Trieste 23 (1991), 41-80.
[00016] [DU] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.
[00017] [DG] S. J. Dilworth and M. Girardi, Bochner vs. Pettis norms: examples and results, in: Banach Spaces, Bor-Luh Lin and W. B. Johnson (eds.), Contemp. Math. 144, Amer. Math. Soc., Providence, R.I., 1993, 69-80.
[00018] [Ga] V. F. Gaposhkin, Convergence and limit theorems for sequences of random variables, Theory Probab. Appl. 17 (1972), 379-400.
[00019] [G1] M. Girardi, Compactness in , Dunford-Pettis operators, geometry of Banach spaces, Proc. Amer. Math. Soc. 111 (1991), 767-777. | Zbl 0733.47029
[00020] [G2] M. Girardi, Weak vs. norm compactness in , the Bocce criterion, Studia Math. 98 (1991), 95-97. | Zbl 0732.47027
[00021] [HU] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. | Zbl 0368.60006
[00022] [IT] A. and C. Ionescu-Tulcea, Topics in the Theory of Lifting, Springer, Berlin, 1969. | Zbl 0179.46303
[00023] [J] V. Jalby, Contribution aux problèmes de convergence des fonctions vectorielles et des intégrales fonctionnelles, Thèse de Doctorat, Université Montpellier II, 1993.
[00024] [Jaw] A. Jawhar, Mesures de transition et applications, Sém. Anal. Convexe 14 (1984), 13.1-13.62.
[00025] [N] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965. | Zbl 0137.11301
[00026] [P] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. | Zbl 0019.41603
[00027] [SW] G. Schlüchtermann and R. F. Wheeler, On strongly WCG Banach spaces, Math. Z. 199 (1988), 387-398. | Zbl 0637.46011
[00028] [S] L. Schwartz, Radon Measures, Oxford University Press, London, 1973.
[00029] [T] M. Talagrand, Weak Cauchy sequences in , Amer. J. Math. 106 (1984), 703-724. | Zbl 0579.46025
[00030] [V1] M. Valadier, Young measures, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, Berlin, 1990, 152-188.
[00031] [V2] M. Valadier, Oscillations et compacité forte dans , Sém. Anal. Convexe 21 (1991), 7.1-7.10.