We consider a convolution operator Tf = p.v. Ω ⁎ f with , where K(x) is an (n,β) kernel near the origin and an (α,β), α ≥ n, kernel away from the origin; h(x) is a real-valued function on . We give a criterion for such an operator to be bounded from the space into itself.
@article{bwmeta1.element.bwnjournal-article-smv111i2p195bwm, author = {Lung-Kee Chen and Dashan Fan}, title = {Oscillatory kernels in certain Hardy-type spaces}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {195-206}, zbl = {0813.42012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i2p195bwm} }
Chen, Lung-Kee; Fan, Dashan. Oscillatory kernels in certain Hardy-type spaces. Studia Mathematica, Tome 108 (1994) pp. 195-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i2p195bwm/
[00000] [1] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. | Zbl 0594.42007
[00001] [2] R. Coifman, A real variable characterization of , Studia Math. 51 (1974), 269-274. | Zbl 0289.46037
[00002] [3] D. Fan, An oscillating integral on the Besov space , J. Math. Anal. Appl., to appear.
[00003] [4] D. Fan and Y. Pan, Boundedness of certain oscillatory singular integrals, Studia Math., to appear. | Zbl 0886.42008
[00004] [5] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00005] [6] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1992. | Zbl 0757.42006
[00006] [7] Y. Han, Certain Hardy-type spaces, Ph.D. thesis, Washington University, St Louis, 1984.
[00007] [8] Y. Han, A class of Hardy-type spaces, Chinese Quart. J. Math. 1 (2) (1986), 42-64.
[00008] [9] W. B. Jurkat and G. Sampson, The complete solution to the mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. | Zbl 0507.47013
[00009] [10] R. H. Latter, A characterization of in terms of atoms, Studia Math. 62 (1978), 93-101. | Zbl 0398.42017
[00010] [11] P. Sjölin, Convolution with oscillating kernels on spaces, J. London Math. Soc. 23 (1981), 442-454. | Zbl 0426.46034