Oscillatory kernels in certain Hardy-type spaces
Chen, Lung-Kee ; Fan, Dashan
Studia Mathematica, Tome 108 (1994), p. 195-206 / Harvested from The Polish Digital Mathematics Library

We consider a convolution operator Tf = p.v. Ω ⁎ f with Ω(x)=K(x)eih(x), where K(x) is an (n,β) kernel near the origin and an (α,β), α ≥ n, kernel away from the origin; h(x) is a real-valued C function on n0. We give a criterion for such an operator to be bounded from the space H0p(n) into itself.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216128
@article{bwmeta1.element.bwnjournal-article-smv111i2p195bwm,
     author = {Lung-Kee Chen and Dashan Fan},
     title = {Oscillatory kernels in certain Hardy-type spaces},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {195-206},
     zbl = {0813.42012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i2p195bwm}
}
Chen, Lung-Kee; Fan, Dashan. Oscillatory kernels in certain Hardy-type spaces. Studia Mathematica, Tome 108 (1994) pp. 195-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i2p195bwm/

[00000] [1] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted Lp estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. | Zbl 0594.42007

[00001] [2] R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269-274. | Zbl 0289.46037

[00002] [3] D. Fan, An oscillating integral on the Besov space B01,0, J. Math. Anal. Appl., to appear.

[00003] [4] D. Fan and Y. Pan, Boundedness of certain oscillatory singular integrals, Studia Math., to appear. | Zbl 0886.42008

[00004] [5] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078

[00005] [6] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1992. | Zbl 0757.42006

[00006] [7] Y. Han, Certain Hardy-type spaces, Ph.D. thesis, Washington University, St Louis, 1984.

[00007] [8] Y. Han, A class of Hardy-type spaces, Chinese Quart. J. Math. 1 (2) (1986), 42-64.

[00008] [9] W. B. Jurkat and G. Sampson, The complete solution to the (Lp,Lq) mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. | Zbl 0507.47013

[00009] [10] R. H. Latter, A characterization of Hp(n) in terms of atoms, Studia Math. 62 (1978), 93-101. | Zbl 0398.42017

[00010] [11] P. Sjölin, Convolution with oscillating kernels on Hp spaces, J. London Math. Soc. 23 (1981), 442-454. | Zbl 0426.46034