Some Sawyer type inequalities for martingales
Chang, Xiang-Qian
Studia Mathematica, Tome 108 (1994), p. 187-194 / Harvested from The Polish Digital Mathematics Library

Some martingale analogues of Sawyer's two-weight norm inequality for the Hardy-Littlewood maximal function Mf are shown for the Doob maximal function of martingales.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216127
@article{bwmeta1.element.bwnjournal-article-smv111i2p187bwm,
     author = {Xiang-Qian Chang},
     title = {Some Sawyer type inequalities for martingales},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {187-194},
     zbl = {0812.42012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i2p187bwm}
}
Chang, Xiang-Qian. Some Sawyer type inequalities for martingales. Studia Mathematica, Tome 108 (1994) pp. 187-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i2p187bwm/

[00000] [1] J. L. Doob, Stochastic Processes, Wiley, New York, 1953. | Zbl 0053.26802

[00001] [2] R. A. Hunt, D. S. Kurtz and C. J. Neugebauer, A note on the equivalence of Ap and Sawyer’s condition for equal weights, in: Conf. Harmonic Analysis in Honor of A. Zygmund, Wadsworth, Belmont, Calif., 1981, 156-158.

[00002] [3] M. Izumisawa and N. Kazamaki, Weighted norm inequalities for martingales, Tôhoku Math. J. 29 (1977), 115-124. | Zbl 0359.60050

[00003] [4] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016

[00004] [5] E. Sawyer, A characterization of a two weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11. | Zbl 0508.42023