We prove that on Iwasawa AN groups coming from arbitrary semisimple Lie groups there is a Laplacian with a nonholomorphic functional calculus, not only for but also for , where 1 < p < ∞. This yields a spectral multiplier theorem analogous to the ones known for sublaplacians on stratified groups.
@article{bwmeta1.element.bwnjournal-article-smv111i2p103bwm, author = {Michael Cowling and Saverio Giulini and Andrzej Hulanicki and Giancarlo Mauceri}, title = {Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {103-121}, zbl = {0820.43001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i2p103bwm} }
Cowling, Michael; Giulini, Saverio; Hulanicki, Andrzej; Mauceri, Giancarlo. Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. Studia Mathematica, Tome 108 (1994) pp. 103-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i2p103bwm/
[00000] [1] G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, preprint. | Zbl 0794.43003
[00001] [2] J. Ph. Anker, Fourier multipliers on Riemannian symmetric spaces of the non-compact type, Ann. of Math. 132 (1990), 597-628. | Zbl 0741.43009
[00002] [3] J. Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297. | Zbl 0764.43005
[00003] [4] J. Ph. Anker, A short proof of a classical covering lemma, Monatsh. Math. 107 (1989), 5-7. | Zbl 0671.22001
[00004] [5] J. Ph. Anker et N. Lohoué, Multiplicateurs sur certains espaces symétriques, Amer. J. Math. 108 (1986), 1303-1354. | Zbl 0616.43009
[00005] [6] A. Bonami et J.-L. Clerc, Sommes de Cesàro et multiplicateurs de développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263. | Zbl 0278.43015
[00006] [7] P. Bougerol, Exemples de théorèmes locaux sur les groupes résolubles, Ann. Inst. H. Poincaré 19 (1983), 369-391. | Zbl 0533.60010
[00007] [8] J. Cheeger, M. Gromov and M. E. Taylor, Finite propagation speed, kernel estimates for functions of the Laplacian, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15-53. | Zbl 0493.53035
[00008] [9] M. Christ, bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81. | Zbl 0739.42010
[00009] [10] J.-L. Clerc and E. M. Stein, multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911-3912. | Zbl 0296.43004
[00010] [11] R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. | Zbl 0224.43006
[00011] [12] M. G. Cowling, S. Giulini, G. I. Gaudry and G. Mauceri, Weak type (1,1) estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc. 323 (1991), 637-649. | Zbl 0722.22006
[00012] [13] L. De Michele and G. Mauceri, multipliers on the Heisenberg group, Michigan J. Math. 26 (1979), 361-371. | Zbl 0437.43005
[00013] [14] L. De Michele and G. Mauceri, multipliers on stratified groups, Ann. Mat. Pura Appl. 148 (1987), 353-366. | Zbl 0638.43007
[00014] [15] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton University Press, Princeton, N.J., 1982. | Zbl 0508.42025
[00015] [16] G. I. Gaudry, T. Qian and P. Sjögren, Singular integrals associated to the Laplacian on the affine group ax+b, preprint. | Zbl 0776.43003
[00016] [17] S. Giulini and G. Mauceri, Analysis of a distinguished Laplacean on solvable Lie groups, preprint. | Zbl 0801.43002
[00017] [18] W. Hebisch, The subalgebra of generated by the Laplacean, Proc. Amer. Mat. Soc., to appear. | Zbl 0789.22018
[00018] [19] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984. | Zbl 0543.58001
[00019] [20] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Grundlehren Math. Wiss. 115, Springer, Berlin, 1963. | Zbl 0115.10603
[00020] [21] L. Hörmander, Estimates for translation invariant operators in spaces, Acta Math. 104 (1960), 93-140. | Zbl 0093.11402
[00021] [22] A. Hulanicki, Subalgebra of associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005
[00022] [23] A. Hulanicki and E. M. Stein, Marcinkiewicz multiplier theorem for stratified groups, manuscript.
[00023] [24] G. Mauceri and S. Meda, Vector valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154. | Zbl 0763.43005
[00024] [25] S. Mikhlin, Multidimensional Singular Integral Equations, Pergamon Press, 1965.
[00025] [26] D. Müller and E. M. Stein, announcement at a conference, August 1992.
[00026] [27] J.-P. Pier, Amenable Locally Compact Groups, Wiley, New York, 1984. | Zbl 0597.43001
[00027] [28] R. J. Stanton and P. A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251-276. | Zbl 0411.43014
[00028] [29] M. E. Taylor, estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793. | Zbl 0691.58043
[00029] [30] N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346-410. | Zbl 0634.22008
[00030] [31] L. Vretare, On Fourier multipliers on certain symmetric spaces, Math. Scand. 37 (1975), 111-121.
[00031] [32] N. J. Weiss, estimates for bi-invariant operators on compact Lie groups, Amer. J. Math. 94 (1972), 103-118. | Zbl 0239.43004