On the non-existence of norms for some algebras of functions
Yood, Bertram
Studia Mathematica, Tome 108 (1994), p. 97-101 / Harvested from The Polish Digital Mathematics Library

Let C(Ω) be the algebra of all complex-valued continuous functions on a topological space Ω where C(Ω) contains unbounded functions. First it is shown that C(Ω) cannot have a Banach algebra norm. Then it is shown that, for certain Ω, C(Ω) cannot possess an (incomplete) normed algebra norm. In particular, this is so for Ω=n where ℝ is the reals.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216122
@article{bwmeta1.element.bwnjournal-article-smv111i1p97bwm,
     author = {Bertram Yood},
     title = {On the non-existence of norms for some algebras of functions},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {97-101},
     zbl = {0803.46027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i1p97bwm}
}
Yood, Bertram. On the non-existence of norms for some algebras of functions. Studia Mathematica, Tome 108 (1994) pp. 97-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i1p97bwm/

[00000] [1] W. G. Bade and P. C. Curtis Jr., Homomorphisms of commutative Banach algebras, Amer. J. Math. 82 (1960), 589-608. | Zbl 0093.12503

[00001] [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039

[00002] [3] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960. | Zbl 0093.30001

[00003] [4] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York, 1965.

[00004] [5] I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418. | Zbl 0033.18701

[00005] [6] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960. | Zbl 0095.09702