Volume approximation of convex bodies by polytopes - a constructive method
Gordon, Yehoram ; Meyer, Mathieu ; Reisner, Shlomo
Studia Mathematica, Tome 108 (1994), p. 81-95 / Harvested from The Polish Digital Mathematics Library

Algorithms are given for constructing a polytope P with n vertices (facets), contained in (or containing) a given convex body K in d, so that the ratio of the volumes |K∖P|/|K| (or |P∖K|/|K|) is smaller than f(d)/n2/(d-1).

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216121
@article{bwmeta1.element.bwnjournal-article-smv111i1p81bwm,
     author = {Yehoram Gordon and Mathieu Meyer and Shlomo Reisner},
     title = {Volume approximation of convex bodies by polytopes - a constructive method},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {81-95},
     zbl = {0808.52001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i1p81bwm}
}
Gordon, Yehoram; Meyer, Mathieu; Reisner, Shlomo. Volume approximation of convex bodies by polytopes - a constructive method. Studia Mathematica, Tome 108 (1994) pp. 81-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i1p81bwm/

[00000] [1] U. Betke and J. M. Wills, Diophantine approximation of convex bodies, manuscript, 1979.

[00001] [2] E. M. Bronshteĭn and L. D. Ivanov, The approximation of convex sets by polyhedra, Sibirsk. Mat. Zh. 16 (1975), 1110-1112 (in Russian); English transl.: Siberian Math. J. 16 (1975), 852-853.

[00002] [3] R. Dudley, Metric entropy of some classes of sets with differentiable boundaries, J. Approx. Theory 10 (1974), 227-236. | Zbl 0275.41011

[00003] [4] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Springer, 1953, 1972. | Zbl 0052.18401

[00004] [5] P. M. Gruber, Approximation of convex bodies, in: Convexity and its Applications, P. M. Gruber and J. M. Wills (eds.), Birkhäuser, 1983, 131-162.

[00005] [6] P. M. Gruber, Aspects of approximation of convex bodies, in: Handbook of Convex Geometry, vol. A, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993. | Zbl 0791.52007

[00006] [7] P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies I, Forum Math. 5 (1993), 281-297. | Zbl 0780.52005

[00007] [8] P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies II, ibid., 521-538. | Zbl 0788.41020

[00008] [9] A. M. Macbeath, An extremal property of the hypersphere, Proc. Cambridge Philos. Soc. 47 (1951), 245-247. | Zbl 0042.40801

[00009] [10] J. S. Müller, Approximation of the ball by random polytopes, J. Approx. Theory 63 (1990), 198-209. | Zbl 0736.41027

[00010] [11] E. Sas, Über eine Extremaleigenschaft der Ellipsen, Compositio Math. 6 (1939), 468-470.