σ-fragmented Banach spaces II
Jayne, J. ; Namioka, I. ; Rogers, C.
Studia Mathematica, Tome 108 (1994), p. 69-80 / Harvested from The Polish Digital Mathematics Library

Recent papers have investigated the properties of σ-fragmented Banach spaces and have sought to find which Banach spaces are σ-fragmented and which are not. Banach spaces that have a norming M-basis are shown to be σ-fragmented using weakly closed sets. Zizler has shown that Banach spaces satisfying certain conditions have locally uniformly convex norms. Banach spaces that satisfy similar, but weaker conditions are shown to be σ-fragmented. An example, due to R. Pol, is given of a Banach space that is σ-fragmented using differences of weakly closed sets, but is not σ-fragmented using weakly closed sets.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216120
@article{bwmeta1.element.bwnjournal-article-smv111i1p69bwm,
     author = {J. Jayne and I. Namioka and C. Rogers},
     title = {$\sigma$-fragmented Banach spaces II},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {69-80},
     zbl = {0807.46020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i1p69bwm}
}
Jayne, J.; Namioka, I.; Rogers, C. σ-fragmented Banach spaces II. Studia Mathematica, Tome 108 (1994) pp. 69-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i1p69bwm/

[00000] [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46. | Zbl 0164.14903

[00001] [2] R. Deville, Problèmes de renormages, J. Funct. Anal. 68 (1986), 117-129. | Zbl 0607.46014

[00002] [3] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Math. 64, Longman, Essex, 1993. | Zbl 0782.46019

[00003] [4] R. Haydon, Some problems about scattered spaces, Séminaire Initiation à l'Analyse 9 (1989/90), 1-10.

[00004] [5] R. Haydon, Trees in renorming theory, preprint. | Zbl 1036.46003

[00005] [6] R. Haydon and C. A. Rogers, A locally uniformly convex renorming for certain C(K), Mathematika 37 (1990), 1-8. | Zbl 0725.46008

[00006] [7] J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak compact sets, Collect. Math. 41 (1990), 133-163. | Zbl 0764.46015

[00007] [8] J. E. Jayne, I. Namioka and C. A. Rogers, σ-fragmented Banach spaces, Mathematika 39 (1992), 161-188 and 197-215.

[00008] [9] J. E. Jayne, I. Namioka and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc. 66 (1993), 651-672. | Zbl 0793.54026

[00009] [10] J. E. Jayne, I. Namioka and C. A. Rogers, Fragmentability and σ-fragmentability, Fund. Math. 143 (1993), 207-220. | Zbl 0801.46011

[00010] [11] J. E. Jayne, I. Namioka and C. A. Rogers, Continuous functions on compact totally ordered spaces, J. Funct. Anal., to appear. | Zbl 0871.54022

[00011] [12] J. E. Jayne, J. Orihuela, A. J. Pallarés and G. Vera, σ-fragmentability of multivalued maps and selection theorems, J. Funct. Anal. 117 (1993), 243-373. | Zbl 0822.54018

[00012] [13] K. John and V. Zizler, Smoothness and its equivalents in weakly compactly generated Banach spaces, ibid. 15 (1974), 1-11. | Zbl 0272.46012

[00013] [14] K. John and V. Zizler, Some remarks on non-separable Banach spaces with Markuševič basis, Comment. Math. Univ. Carolin. 15 (1974), 679-691. | Zbl 0291.46010

[00014] [15] I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1987), 258-281. | Zbl 0654.46017

[00015] [16] I. Namioka and R. Pol, Mappings of Baire spaces into function spaces and Kadec renorming, Israel J. Math. 78 (1992), 1-20. | Zbl 0794.54036

[00016] [17] N. K. Ribarska, Internal characterization of fragmentable spaces, Mathematika 34 (1987), 243-257. | Zbl 0645.46017

[00017] [18] I. Singer, Bases in Banach Spaces II, Springer, Berlin, 1981.

[00018] [19] V. Zizler, Locally uniformly rotund renorming and decomposition of Banach spaces, Bull. Austral. Math. Soc. 29 (1984), 259-265. | Zbl 0553.46014