The classical level function construction of Halperin and Lorentz is extended to Lebesgue spaces with general measures. The construction is also carried farther. In particular, the level function is considered as a monotone map on its natural domain, a superspace of . These domains are shown to be Banach spaces which, although closely tied to spaces, are not reflexive. A related construction is given which characterizes their dual spaces.
@article{bwmeta1.element.bwnjournal-article-smv111i1p19bwm, author = {Gord Sinnamon}, title = {Spaces defined by the level function and their duals}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {19-52}, zbl = {0805.46027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv111i1p19bwm} }
Sinnamon, Gord. Spaces defined by the level function and their duals. Studia Mathematica, Tome 108 (1994) pp. 19-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv111i1p19bwm/
[00000] [1] G. Bennett, Some elementary inequalities, III, Quart. J. Math. Oxford Ser. (2) 42 (1991), 149-174. | Zbl 0751.26007
[00001] [2] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. | Zbl 0402.26006
[00002] [3] I. Halperin, Function spaces, Canad. J. Math. 5 (1953), 273-288. | Zbl 0052.11303
[00003] [4] G. G. Lorentz, Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953.
[00004] [5] V. G. Maz'ja, Sobolev Spaces, Springer, Berlin, 1985.
[00005] [6] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38. | Zbl 0236.26015
[00006] [7] H. L. Royden, Real Analysis, 2nd ed., Macmillan, New York, 1968. | Zbl 0197.03501
[00007] [8] G. J. Sinnamon, Operators on Lebesgue spaces with general measures, Doctoral Thesis, McMaster Univ., 1987.
[00008] [9] G. J. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl. 160 (1991), 434-445. | Zbl 0756.26011
[00009] [10] G. J. Sinnamon, Interpolation of spaces defined by the level function, in: Harmonic Analysis, ICM-90 Satellite Proceedings, Springer, Tokyo, 1991, 190-193. | Zbl 0783.46018