We construct a non-m-convex non-commutative -algebra on which all entire functions operate. Our example is also a Q-algebra and a radical algebra. It follows that some results true in the commutative case fail in general.
@article{bwmeta1.element.bwnjournal-article-smv110i3p283bwm, author = {W. \.Zelazko}, title = {Concerning entire functions in $B\_{0}$-algebras}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {283-290}, zbl = {0803.46051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p283bwm} }
Żelazko, W. Concerning entire functions in $B_{0}$-algebras. Studia Mathematica, Tome 108 (1994) pp. 283-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p283bwm/
[00000] [1] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952). | Zbl 0047.35502
[00001] [2] B. S. Mityagin, S. Rolewicz and W. Żelazko, Entire functions in -algebras, Studia Math. 21 (1962), 291-306. | Zbl 0111.31001
[00002] [3] P. Turpin, Une remarque sur les algèbres à inverse continu, C. R. Acad. Sci. Paris 270 (1979), 1686-1689. | Zbl 0195.13804
[00003] [4] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971.
[00004] [5] W. Żelazko, Metric generalizations of Banach algebras, Rozprawy Mat. (Dissertationes Math.) 47 (1965). | Zbl 0131.13005
[00005] [6] W. Żelazko, Selected Topics in Topological Algebras, Aarhus University Lecture Notes Ser. 31, 1971. | Zbl 0221.46041
[00006] [7] W. Żelazko, A non-m-convex algebra on which operate all entire functions, Ann. Polon. Math. 46 (1985), 389-394. | Zbl 0608.46029
[00007] [8] W. Żelazko, On certain open problems in topological algebras, Rend. Sem. Mat. Fis. Milano 59 (1989) (1992), 49-58. | Zbl 0755.46019