The cancellation law for inf-convolution of convex functions
Zagrodny, Dariusz
Studia Mathematica, Tome 108 (1994), p. 271-282 / Harvested from The Polish Digital Mathematics Library

Conditions under which the inf-convolution of f and g fg(x):=infy+z=x(f(y)+g(z)) has the cancellation property (i.e. f □ h ≡ g □ h implies f ≡ g) are treated in a convex analysis framework. In particular, we show that the set of strictly convex lower semicontinuous functions f:X+ on a reflexive Banach space such that limxf(x)/x= constitutes a semigroup, with inf-convolution as multiplication, which can be embedded in the group of its quotients.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216114
@article{bwmeta1.element.bwnjournal-article-smv110i3p271bwm,
     author = {Dariusz Zagrodny},
     title = {The cancellation law for inf-convolution of convex functions},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {271-282},
     zbl = {0811.49012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p271bwm}
}
Zagrodny, Dariusz. The cancellation law for inf-convolution of convex functions. Studia Mathematica, Tome 108 (1994) pp. 271-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p271bwm/

[00000] [1] H. Attouch, Varriational Convergence for Functions and Operators, Pitman Adv. Publ. Program, Boston, 1984.

[00001] [2] J.-P. Aubin, Optima and Equilibria. An Introduction to Nonlinear Analysis, Springer, Berlin, 1993.

[00002] [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.

[00003] [4] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983. | Zbl 0582.49001

[00004] [5] R. Correa, A. Jofré and L. Thibault, Characterization of lower semicontinuous convex functions, Proc. Amer. Math. Soc. 116 (1992), 67-72. | Zbl 0762.49007

[00005] [6] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.

[00006] [7] R. B. Holmes, Geometric Functional Analysis and its Applications, Springer, New York, 1975. | Zbl 0336.46001

[00007] [8] A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 1979. | Zbl 0407.90051

[00008] [9] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer, Berlin, 1989. | Zbl 0658.46035

[00009] [10] C. Pontini, Solving in the affirmative a conjecture about a limit of gradients, J. Optim. Theory Appl. 70 (1991), 623-629. | Zbl 0795.49014

[00010] [11] T. Rockafellar, Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39 (1979), 331-355. | Zbl 0413.49015

[00011] [12] T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 32 (1980), 257-280. | Zbl 0447.49009

[00012] [13] T. Rockafellar, On a special class of convex functions, J. Optim. Theory Appl. 70 (1991), 619-621. | Zbl 0795.49015

[00013] [14] T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. | Zbl 0193.18401

[00014] [15] L. Thibault and D. Zagrodny, Integration of subdifferentials of lower semicontinuous functions on Banach spaces, J. Math. Anal. Appl., to appear. | Zbl 0826.49009

[00015] [16] D. Zagrodny, Approximate mean value theorem for upper subderivatives, Nonlinear Anal. 12 (1988), 1413-1428. | Zbl 0689.49017

[00016] [17] D. Zagrodny, An example of bad convex function, J. Optim. Theory Appl. 70 (1991), 631-637. | Zbl 0793.90056