We show that the affine surface area as(∂K) of a convex body K in can be computed as where is a constant and is the illumination body.
@article{bwmeta1.element.bwnjournal-article-smv110i3p257bwm, author = {Elisabeth Werner}, title = {Illumination bodies and affine surface area}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {257-269}, zbl = {0813.52007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p257bwm} }
Werner, Elisabeth. Illumination bodies and affine surface area. Studia Mathematica, Tome 108 (1994) pp. 257-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p257bwm/
[00000] [B] W. Blaschke, Vorlesungen über Differentialgeometrie II, Springer, 1923. | Zbl 49.0499.01
[00001] [H] R. Howard, personal communication.
[00002] [L1] K. Leichtweiss, Über ein Formel Blaschkes zur Affinoberfläche, Studia Sci. Math. Hungar. 21 (1986), 453-474. | Zbl 0561.53012
[00003] [L2] K. Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), 429-464.
[00004] [Lu] E. Lutwak, Extended affine surface area, Adv. in Math. 85 (1991), 39-68. | Zbl 0727.53016
[00005] [SW] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66 (1990), 275-290. | Zbl 0739.52008