Let T be a representation of a suitable abelian semigroup S by isometries on a Banach space. We study the spectral conditions which will imply that T(s) is invertible for each s in S. On the way we analyse the relationship between the spectrum of T, Sp(T,S), and its unitary spectrum . For or , we establish connections with polynomial convexity.
@article{bwmeta1.element.bwnjournal-article-smv110i3p235bwm, author = {C. Batty and D. Greenfield}, title = {On the invertibility of isometric semigroup representations}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {235-250}, zbl = {0803.47033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p235bwm} }
Batty, C.; Greenfield, D. On the invertibility of isometric semigroup representations. Studia Mathematica, Tome 108 (1994) pp. 235-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p235bwm/
[00000] [1] H. Alexander, On a problem of Stolzenberg in polynomial convexity, Illinois J. Math. 22 (1978), 149-160. | Zbl 0376.32013
[00001] [2] H. Alexander, Totally real sets in , Proc. Amer. Math. Soc. 111 (1991), 131-133. | Zbl 0734.32008
[00002] [3] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. | Zbl 0652.47022
[00003] [4] C. J. K. Batty and Vũ Quôc Phóng, Stability of strongly continuous representations of abelian semigroups, Math. Z. (1992), 75-88.
[00004] [5] R. G. Douglas, On extending commutative semigroups of operators, Bull. London Math. Soc. 1 (1969), 157-159. | Zbl 0187.06501
[00005] [6] Yu. I. Lyubich, Introduction to the Theory of Banach Representations of Groups, Birkhäuser, Basel, 1988.
[00006] [7] Yu. I. Lyubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), 37-42. | Zbl 0639.34050
[00007] [8] G. K. Pedersen, C*-algebras and their Automorphism Groups, Academic Press, London, 1979. | Zbl 0416.46043
[00008] [9] Vũ Quôc Phóng and Yu. I. Lyubich, A spectral criterion for asymptotic almost periodicity for uniformly continuous representations of abelian semigroups, Teor. Funktsiǐ Funktsional. Anal. i Prilozhen. 50 (1988), 38-43 (in Russian); English transl.: J. Soviet Math. 49 (1990), 1263-1266.
[00009] [10] W. Rudin, Fourier Analysis on Groups, Wiley, New York, 1962. | Zbl 0107.09603
[00010] [11] G. M. Sklyar and V. A. Shirman, On the asymptotic stability of a linear differential equation in a Banach space, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 37 (1982), 127-132 (in Russian). | Zbl 0521.34063
[00011] [12] G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259-289. | Zbl 0122.08404
[00012] [13] J. Wermer, Banach Algebras and Several Complex Variables, Springer, New York, 1976. | Zbl 0336.46055