We give a necessary and sufficient condition for a Toeplitz flow to be strictly ergodic. Next we show that the regularity of a Toeplitz flow is not a topological invariant and define the "eventual regularity" as a sequence; its behavior at infinity is topologically invariant. A relation between regularity and topological entropy is given. Finally, we construct strictly ergodic Toeplitz flows with "good" cyclic approximation and non-discrete spectrum.
@article{bwmeta1.element.bwnjournal-article-smv110i2p191bwm, author = {A. Iwanik and Y. Lacroix}, title = {Some constructions of strictly ergodic non-regular Toeplitz flows}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {191-203}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p191bwm} }
Iwanik, A.; Lacroix, Y. Some constructions of strictly ergodic non-regular Toeplitz flows. Studia Mathematica, Tome 108 (1994) pp. 191-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p191bwm/
[00000] [Co-Fo-Si] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982.
[00001] [Do-Iw] T. Downarowicz and A. Iwanik, Quasi-uniform convergence in compact dynamical systems, Studia Math. 89 (1988), 11-25.
[00002] [Do-Kw-La] T. Downarowicz, J. Kwiatkowski and Y. Lacroix, A criterion for Toeplitz flows to be isomorphic and applications, preprint.
[00003] [Fu] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601.
[00004] [He-Ro] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, Springer, 1963.
[00005] [Iw] A. Iwanik, Approximation by periodic transformations and diophantine approximation of the spectrum, preprint.
[00006] [Ja-Ke] K. Jacobs and M. Keane, 0-1 sequences of Toeplitz type, Z. Wahrsch. Verw. Gebiete 13 (1969), 123-131.
[00007] [Ke] M. Keane, Generalized Morse sequences, ibid. 10 (1968), 335-353.
[00008] [La1] Y. Lacroix, Contribution à l'étude des suites de Toeplitz et numération en produit infini, Thesis, Université de Provence, 1992.
[00009] [La2] Y. Lacroix, Metric properties of generalized Cantor products, Acta Arith. 63 (1993), 61-77.
[00010] [Le] M. Lemańczyk, Ergodic -extensions over rational pure point spectrum, category and homomorphisms, Compositio Math. 63 (1987), 63-81.
[00011] [Ne] D. Newton, On the entropy of certain classes of skew-product transformations, Proc. Amer. Math. Soc. 21 (1969), 722-726.
[00012] [Ox] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136.
[00013] [Wi] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), 95-107.