An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.
@article{bwmeta1.element.bwnjournal-article-smv110i2p169bwm, author = {A. Kamont}, title = {Isomorphism of some anisotropic Besov and sequence spaces}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {169-189}, zbl = {0810.41010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p169bwm} }
Kamont, A. Isomorphism of some anisotropic Besov and sequence spaces. Studia Mathematica, Tome 108 (1994) pp. 169-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p169bwm/
[00000] [1] Z. Ciesielski, Properties of the orthonormal Franklin system II, Studia Math. 27 (1966), 289-323. | Zbl 0148.04702
[00001] [2] Z. Ciesielski, Constructive function theory and spline systems, ibid. 53 (1975), 277-302. | Zbl 0273.41010
[00002] [3] Z. Ciesielski and J. Domsta, Construction of an orthonormal basis in and , ibid. 41 (1972), 211-224. | Zbl 0235.46047
[00003] [4] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact manifolds, Part I, ibid. 76 (1983), 1-58. | Zbl 0599.46041
[00004] [5] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact manifolds, Part II, ibid., 95-136. | Zbl 0599.46042
[00005] [6] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, ibid. 107 (1993), 171-204.
[00006] [7] A. Kamont, A note on the isomorphism of some anisotropic Besov-type function and sequence spaces, in: Proc. Conf. "Open Problems in Approximation Theory", Voneshta Voda, June 18-24, 1993, to appear.
[00007] [8] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325. | Zbl 0328.41008