Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator
Bloom, S. ; Kerman, R.
Studia Mathematica, Tome 108 (1994), p. 149-167 / Harvested from The Polish Digital Mathematics Library

Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies Δ2. Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216106
@article{bwmeta1.element.bwnjournal-article-smv110i2p149bwm,
     author = {S. Bloom and R. Kerman},
     title = {Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {149-167},
     zbl = {0813.42014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p149bwm}
}
Bloom, S.; Kerman, R. Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator. Studia Mathematica, Tome 108 (1994) pp. 149-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p149bwm/

[00000] [1] R. Bagby, Weak bounds for the maximal function in weighted Orlicz spaces, Studia Math. 95 (1990), 195-204. | Zbl 0718.42018

[00001] [2] N. K. Bari and S. B. Stečkin [S. B. Stechkin], Best approximation and differential properties of two conjugate functions, Trudy Moskov. Mat. Obshch. 5 (1956), 483-522 (in Russian).

[00002] [3] S. Bloom and R. Kerman, Weighted LΦ integral inequalities for operators of Hardy type, Studia Math. 110 (1994), 35-52. | Zbl 0823.42010

[00003] [4] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. | Zbl 0291.44007

[00004] [5] A. S. Gogatishvili, General weak-type estimates for the maximal operators and singular integrals, preprint.

[00005] [6] A. S. Gogatishvili and L. Pick, Weighted inequalities of weak and extra-weak type for the maximal operator and Hilbert transform, preprint. | Zbl 0798.42009

[00006] [7] R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1981/82), 277-284. | Zbl 0517.42030

[00007] [8] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, 1991.

[00008] [9] M. A. Krasnosel'skii [M. A. Krasnosel'skiǐ] and Ya. B. Rutickii [Ya. B. Rutitskiǐ], Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961. | Zbl 0095.09103

[00009] [10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016

[00010] [11] L. Pick, Weighted inequalities for the Hardy-Littlewood maximal operators in Orlicz spaces, preprint.

[00011] [12] L. Quinsheng, Two weight Φ-inequalities for the Hardy operator, Hardy-Littlewood maximal operator and fractional integrals, Proc. Amer. Math. Soc., to appear. | Zbl 0758.42012

[00012] [13] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. | Zbl 0724.46032

[00013] [14] T. Shimogaki, Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan 17 (1965), 365-373. | Zbl 0135.16304

[00014] [15] A. Zygmund, Trigonometric Series, Vol. I, 2nd ed., Cambridge Univ. Press, Cambridge, 1959. | Zbl 0085.05601