Note on semigroups generated by positive Rockland operators on graded homogeneous groups
Dziubański, Jacek ; Hebisch, Waldemar ; Zienkiewicz, Jacek
Studia Mathematica, Tome 108 (1994), p. 115-126 / Harvested from The Polish Digital Mathematics Library

Let L be a positive Rockland operator of homogeneous degree d on a graded homogeneous group G and let pt be the convolution kernels of the semigroup generated by L. We prove that if τ(x) is a Riemannian distance of x from the unit element, then there are constants c>0 and C such that |p1(x)|Cexp(-cτ(x)d/(d-1)). Moreover, if G is not stratified, more precise estimates of p1 at infinity are given.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216104
@article{bwmeta1.element.bwnjournal-article-smv110i2p115bwm,
     author = {Jacek Dziuba\'nski and Waldemar Hebisch and Jacek Zienkiewicz},
     title = {Note on semigroups generated by positive Rockland operators on graded homogeneous groups},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {115-126},
     zbl = {0833.43009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p115bwm}
}
Dziubański, Jacek; Hebisch, Waldemar; Zienkiewicz, Jacek. Note on semigroups generated by positive Rockland operators on graded homogeneous groups. Studia Mathematica, Tome 108 (1994) pp. 115-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p115bwm/

[00000] [D] J. Dziubański, On semigroups generated by subelliptic operators on homogeneous groups, Colloq. Math. 64 (1993), 215-231. | Zbl 0837.43010

[00001] [DH] J. Dziubański and A. Hulanicki, On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups, Studia Math. 94 (1989), 81-95. | Zbl 0701.47020

[00002] [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982. | Zbl 0508.42025

[00003] [He] W. Hebisch, Sharp pointwise estimates for the kernels of the semigroup generated by sums of even powers of vector fields on homogeneous groups, Studia Math. 95 (1989), 93-106. | Zbl 0693.22005

[00004] [He1] W. Hebisch, Estimates on the semigroups generated by left invariant operators on Lie groups, J. Reine Angew. Math. 423 (1992), 1-45.

[00005] [HS] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236. | Zbl 0723.22007

[00006] [HN] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958. | Zbl 0423.35040

[00007] [H] A. Hulanicki, Subalgebra of L1(G) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005

[00008] [HJ] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. | Zbl 0564.43007

[00009] [J] J. W. Jenkins, Dilations and gauges on nilpotent Lie groups, Colloq. Math. 41 (1979), 91-101. | Zbl 0434.22014

[00010] [NRS] A. Nagel, F. Ricci and E. M. Stein, Harmonic analysis and fundamental solutions on nilpotent Lie groups, in: Analysis and Partial Differential Equations, Marcel Dekker, 1990, 249-275.

[00011] [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. | Zbl 0516.47023