Let L be a positive Rockland operator of homogeneous degree d on a graded homogeneous group G and let be the convolution kernels of the semigroup generated by L. We prove that if τ(x) is a Riemannian distance of x from the unit element, then there are constants c>0 and C such that . Moreover, if G is not stratified, more precise estimates of at infinity are given.
@article{bwmeta1.element.bwnjournal-article-smv110i2p115bwm, author = {Jacek Dziuba\'nski and Waldemar Hebisch and Jacek Zienkiewicz}, title = {Note on semigroups generated by positive Rockland operators on graded homogeneous groups}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {115-126}, zbl = {0833.43009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p115bwm} }
Dziubański, Jacek; Hebisch, Waldemar; Zienkiewicz, Jacek. Note on semigroups generated by positive Rockland operators on graded homogeneous groups. Studia Mathematica, Tome 108 (1994) pp. 115-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p115bwm/
[00000] [D] J. Dziubański, On semigroups generated by subelliptic operators on homogeneous groups, Colloq. Math. 64 (1993), 215-231. | Zbl 0837.43010
[00001] [DH] J. Dziubański and A. Hulanicki, On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups, Studia Math. 94 (1989), 81-95. | Zbl 0701.47020
[00002] [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982. | Zbl 0508.42025
[00003] [He] W. Hebisch, Sharp pointwise estimates for the kernels of the semigroup generated by sums of even powers of vector fields on homogeneous groups, Studia Math. 95 (1989), 93-106. | Zbl 0693.22005
[00004] [He1] W. Hebisch, Estimates on the semigroups generated by left invariant operators on Lie groups, J. Reine Angew. Math. 423 (1992), 1-45.
[00005] [HS] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236. | Zbl 0723.22007
[00006] [HN] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958. | Zbl 0423.35040
[00007] [H] A. Hulanicki, Subalgebra of associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005
[00008] [HJ] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. | Zbl 0564.43007
[00009] [J] J. W. Jenkins, Dilations and gauges on nilpotent Lie groups, Colloq. Math. 41 (1979), 91-101. | Zbl 0434.22014
[00010] [NRS] A. Nagel, F. Ricci and E. M. Stein, Harmonic analysis and fundamental solutions on nilpotent Lie groups, in: Analysis and Partial Differential Equations, Marcel Dekker, 1990, 249-275.
[00011] [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. | Zbl 0516.47023