Global maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation.
@article{bwmeta1.element.bwnjournal-article-smv110i2p105bwm, author = {Per Sj\"olin}, title = {Global maximal estimates for solutions to the Schr\"odinger equation}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {105-114}, zbl = {0829.42017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p105bwm} }
Sjölin, Per. Global maximal estimates for solutions to the Schrödinger equation. Studia Mathematica, Tome 108 (1994) pp. 105-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i2p105bwm/
[00000] [1] J. Bourgain, A remark on Schrödinger operators, Israel J. Math., to appear. | Zbl 0798.35131
[00001] [2] A. Carbery, Radial Fourier multipliers and associated maximal functions, in: Recent Progress in Fourier Analysis, Proc. Seminar on Fourier Analysis held in El Escorial, Spain, 1983, North-Holland Math. Stud. 111, North-Holland, 1985, 49-56.
[00002] [3] L. Carleson, Some analytical problems related to statistical mechanics, in: Euclidean Harmonic Analysis, Proc. Seminars held at the Univ. of Maryland, 1979, Lecture Notes in Math. 779, Springer, 1979, 5-45.
[00003] [4] M. Cowling, Pointwise behaviour of solutions to Schrödinger equations, in: Harmonic Analysis, Proc. Conf. Cortona, Italy, 1982, Lecture Notes in Math. 992, Springer, 1983, 83-90.
[00004] [5] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behaviour of solutions to the Schrödinger equation, in: Harmonic Analysis, Proc. Conf. Univ. of Minnesota, Minneapolis, 1981, Lecture Notes in Math. 908, Springer, 1982, 205-209.
[00005] [6] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69. | Zbl 0738.35022
[00006] [7] C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347. | Zbl 0737.35102
[00007] [8] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-245. | Zbl 0525.42011
[00008] [9] E. Prestini, Radial functions and regularity of solutions to the Schrödinger equation, Monatsh. Math. 109 (1990), 135-143. | Zbl 0777.42005
[00009] [10] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-55. | Zbl 0419.47020
[00010] [11] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. | Zbl 0631.42010
[00011] [12] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc., to appear. | Zbl 0856.42013
[00012] [13] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud. 112, Princeton Univ. Press, 1986, 307-355.
[00013] [14] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878. | Zbl 0654.42014