On the maximal function for rotation invariant measures in n
Vargas, Ana
Studia Mathematica, Tome 108 (1994), p. 9-17 / Harvested from The Polish Digital Mathematics Library

Given a positive measure μ in n, there is a natural variant of the noncentered Hardy-Littlewood maximal operator Mμf(x)=supxB1/μ(B)ʃB|f|dμ, where the supremum is taken over all balls containing the point x. In this paper we restrict our attention to rotation invariant, strictly positive measures μ in n. We give some necessary and sufficient conditions for Mμ to be bounded from L1(dμ) to L1,(dμ).

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216102
@article{bwmeta1.element.bwnjournal-article-smv110i1p9bwm,
     author = {Ana Vargas},
     title = {On the maximal function for rotation invariant measures in $$\mathbb{R}$^{n}$
            },
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {9-17},
     zbl = {0818.42009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p9bwm}
}
Vargas, Ana. On the maximal function for rotation invariant measures in $ℝ^{n}$
            . Studia Mathematica, Tome 108 (1994) pp. 9-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p9bwm/

[00000] [M-S] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. | Zbl 0139.29002

[00001] [S] P. Sjögren, A remark on the maximal function for measures in n, Amer. J. Math. 105 (1983), 1231-1233.