Given a positive measure μ in , there is a natural variant of the noncentered Hardy-Littlewood maximal operator , where the supremum is taken over all balls containing the point x. In this paper we restrict our attention to rotation invariant, strictly positive measures μ in . We give some necessary and sufficient conditions for to be bounded from to .
@article{bwmeta1.element.bwnjournal-article-smv110i1p9bwm, author = {Ana Vargas}, title = {On the maximal function for rotation invariant measures in $$\mathbb{R}$^{n}$ }, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {9-17}, zbl = {0818.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p9bwm} }
Vargas, Ana. On the maximal function for rotation invariant measures in $ℝ^{n}$ . Studia Mathematica, Tome 108 (1994) pp. 9-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p9bwm/
[00000] [M-S] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. | Zbl 0139.29002
[00001] [S] P. Sjögren, A remark on the maximal function for measures in , Amer. J. Math. 105 (1983), 1231-1233.