When is there a discontinuous homomorphism from L¹(G)?
Runde, Volker
Studia Mathematica, Tome 108 (1994), p. 97-104 / Harvested from The Polish Digital Mathematics Library

Let A be an A*-algebra with enveloping C*-algebra C*(A). We show that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is continuous if and only if its restriction to A is continuous. We apply this result to the question in the title.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216101
@article{bwmeta1.element.bwnjournal-article-smv110i1p97bwm,
     author = {Volker Runde},
     title = {When is there a discontinuous homomorphism from L$^1$(G)?},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {97-104},
     zbl = {0829.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p97bwm}
}
Runde, Volker. When is there a discontinuous homomorphism from L¹(G)?. Studia Mathematica, Tome 108 (1994) pp. 97-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p97bwm/

[00000] [A-D] E. Albrecht and H. G. Dales, Continuity of homomorphisms from C*-algebras and other Banach algebras, in: J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales and M. P. Thomas (eds.), Radical Banach Algebras and Automatic Continuity, Lecture Notes in Math. 975, Springer, 1983, 375-396. | Zbl 0518.46034

[00001] [Bar1] B. A. Barnes, Ideal and representation theory of the L1-algebra of a group with polynomial growth, Colloq. Math. 45 (1981), 301-315. | Zbl 0497.43001

[00002] [Bar2] B. A. Barnes, Ditkin's condition and [SIN]-groups, Monatsh. Math. 96 (1983), 1-15. | Zbl 0512.43002

[00003] [B-L-Sch-V] J. Boidol, H. Leptin, J. Schürmann and D. Vahle, Räume primitiver Ideale von Gruppenalgebren, Math. Ann. 236 (1978), 1-13. | Zbl 0363.46057

[00004] [B-D] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergeb. Math. Grenzgeb. 80, Springer, 1973.

[00005] [Dal] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Univ. Press, in preparation.

[00006] [D-W] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge Univ. Press, 1987. | Zbl 0629.03030

[00007] [G-M] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40. | Zbl 0219.22011

[00008] [H-K-K] W. Hauenschild, E. Kaniuth and A. Kumar, Ideal structure of Beurling algebras on [FC]¯-groups, J. Funct. Anal. 51 (1983) 213-228. | Zbl 0529.43005

[00009] [Hel] A. Ya. Helemskiĭ, The Homology of Banach and Topological Algebras, Math. Appl. (Soviet Ser.) 41, Kluwer, 1989 (translated from the Russian).

[00010] [Lau] K. B. Laursen, On discontinuous homomorphisms from L1(G), Math. Scand. 30 (1972), 263-266. | Zbl 0244.46064

[00011] [Pal] T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741. | Zbl 0396.22001

[00012] [Ped] G. K. Pedersen, C*-Algebras and their Automorphism Groups, London Math. Soc. Monographs 14, Academic Press, 1979.

[00013] [Run] V. Runde, Homomorphisms from L1(G) for G ∈ [FIA]¯ ∪ [Moore], J. Funct. Anal., to appear.

[00014] [Sin1] A. M. Sinclair, Homomorphisms from C*-algebras, Proc. London Math. Soc. (3) 29 (1974), 435-452. | Zbl 0293.46044

[00015] [Sin2] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, 1976.