On group extensions of 2-fold simple ergodic actions
Siemaszko, Artur
Studia Mathematica, Tome 108 (1994), p. 53-64 / Harvested from The Polish Digital Mathematics Library

Compact group extensions of 2-fold simple actions of locally compact second countable amenable groups are considered. It is shown what the elements of the centralizer of such a system look like. It is also proved that each factor of such a system is determined by a compact subgroup in the centralizer of a normal factor.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216098
@article{bwmeta1.element.bwnjournal-article-smv110i1p53bwm,
     author = {Artur Siemaszko},
     title = {On group extensions of 2-fold simple ergodic actions},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {53-64},
     zbl = {0823.28006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p53bwm}
}
Siemaszko, Artur. On group extensions of 2-fold simple ergodic actions. Studia Mathematica, Tome 108 (1994) pp. 53-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p53bwm/

[00000] [1] F. P. Greenleaf, Ergodic theorems and the construction of summing sequences in amenable locally compact groups, Comm. Pure Appl. Math. 26 (1973), 29-46. | Zbl 0243.22005

[00001] [2] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynamical Systems 7 (1987), 531-557. | Zbl 0646.60010

[00002] [3] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.

[00003] [4] M. Lemańczyk, Ergodic compact abelian group extensions of rotations, preprint, Toruń, 1990.

[00004] [5] M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynamical Systems 10 (1990), 763-776. | Zbl 0725.54030

[00005] [6] G. W. Mackey, Ergodic transformation groups with a pure point spectrum, Illinois J. Math. 8 (1964), 593-600. | Zbl 0255.22014

[00006] [7] M. K. Mentzen, Ergodic properties of group extensions of dynamical systems with discrete spectra, Studia Math. 101 (1991), 19-31. | Zbl 0809.28015

[00007] [8] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136. | Zbl 0425.28012

[00008] [9] W. A. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335-341. | Zbl 0499.28016