Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for to hold when and are N-functions with convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.
@article{bwmeta1.element.bwnjournal-article-smv110i1p35bwm, author = {Steven Bloom and Ron Kerman}, title = {Weighted $L\_{$\Phi$}$ integral inequalities for operators of Hardy type}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {35-52}, zbl = {0823.42010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p35bwm} }
Bloom, Steven; Kerman, Ron. Weighted $L_{Φ}$ integral inequalities for operators of Hardy type. Studia Mathematica, Tome 108 (1994) pp. 35-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p35bwm/
[00000] [1] M. Artola, untitled and unpublished manuscript.
[00001] [2] S. Bloom and R. Kerman, Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc. 113 (1991), 135-141. | Zbl 0753.42010
[00002] [3] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. | Zbl 0402.26006
[00003] [4] H. Heinig and L. Maligranda, Interpolation with weights in Orlicz spaces, Luleå University of Technology, Department of Applied Mathematics Research Report 03 (1992). | Zbl 0821.46024
[00004] [5] S. S. Kazarian, Integral inequalities in Orlicz reflexive weighted spaces for the conjugate function, Dokl. Akad. Nauk Armyan. SSR 25 (3) (1990), 261-273 (in Russian).
[00005] [6] R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1981/82), 277-284. | Zbl 0517.42030
[00006] [7] M. A. Krasnosel'skii [M. A. Krasnosel'skiĭ] and Ya. B. Rutickii [Ya. B. Rutitskiĭ], Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961. | Zbl 0095.09103
[00007] [8] F. Martín-Reyes and E. Sawyer, Weighted norm inequalities for the Riemann-Liouville fractional integral operators, Proc. Amer. Math. Soc. 106 (1989), 727-733. | Zbl 0704.42018
[00008] [9] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 34 (1972), 31-38. | Zbl 0236.26015
[00009] [10] L. Quinsheng, Two weight Φ-inequalities for the Hardy operator, Hardy-Littlewood maximal operator and fractional integrals, Proc. Amer. Math. Soc., to appear. | Zbl 0758.42012
[00010] [11] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. | Zbl 0724.46032
[00011] [12] E. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11. | Zbl 0508.42023
[00012] [13] E. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 302 (1988), 533-545. | Zbl 0665.42023
[00013] [14] V. Stepanov, Two-weighted estimates for Riemann-Liouville integrals, preprint no. 39, Czech. Acad. Sci., 1988.
[00014] [15] G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185. | Zbl 0218.26011
[00015] [16] G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. 21 (1969), 622-631. | Zbl 0188.12103
[00016] [17] A. Zygmund, Trigonometric Series, Vol. I, 2nd ed., Cambridge Univ. Press, Cambridge, 1959. | Zbl 0085.05601