Measures of noncompactness and normal structure in Banach spaces
García-Falset, J. ; Jiménez-Melado, A. ; Lloréns-Fuster, E.
Studia Mathematica, Tome 108 (1994), p. 1-8 / Harvested from The Polish Digital Mathematics Library

Sufficient conditions for normal structure of a Banach space are given. One of them implies reflexivity for Banach spaces with an unconditional basis, and also for Banach lattices.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216096
@article{bwmeta1.element.bwnjournal-article-smv110i1p1bwm,
     author = {J. Garc\'\i a-Falset and A. Jim\'enez-Melado and E. Llor\'ens-Fuster},
     title = {Measures of noncompactness and normal structure in Banach spaces},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {1-8},
     zbl = {0840.46009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p1bwm}
}
García-Falset, J.; Jiménez-Melado, A.; Lloréns-Fuster, E. Measures of noncompactness and normal structure in Banach spaces. Studia Mathematica, Tome 108 (1994) pp. 1-8. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i1p1bwm/

[00000] [B] J. Banaś, On modulus of noncompact convexity and its properties, Canad. Math. Bull. 30 (1987), 186-192. | Zbl 0585.46011

[00001] [D-S] D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), in: Banach Space Theory and Its Applications, Lecture Notes in Math. 991, Springer, Berlin, 1983, 35-43. | Zbl 0512.46015

[00002] [G-J-L] J. García-Falset, A. Jiménez-Melado and E. Lloréns-Fuster, A characterization of normal structure, in: Proc. Second Internat. Conf. Fixed Point Theory and Appl., Halifax, 1991, K. K. Tan (ed.), World Sci., Singapore, 1992, 122-129.

[00003] [G-K] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, 1990.

[00004] [G-S] K. Goebel and T. Sękowski, The modulus of noncompact convexity, Ann. Univ. Mariae Curie-Skłodowska 38 (1984), 41-48. | Zbl 0607.46011

[00005] [G-LD] J. P. Gossez and E. Lami Dozo, Some geometrical properties related to the fixed-point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573. | Zbl 0223.47025

[00006] [H] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. | Zbl 0505.46011

[00007] [K] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006,. | Zbl 0141.32402

[00008] [KU] D. N. Kutzarova, Every (β)-space has the Banach-Saks property, C. R. Acad. Bulgare Sci. 42 (11) (1989), 9-11. | Zbl 0696.46016

[00009] [L-Tz] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I-II, Springer, 1977. | Zbl 0362.46013

[00010] [L] T. Landes, Normal structure and the sum property, Pacific J. Math. 123 (1986), 127-147. | Zbl 0629.46016

[00011] [M] V. Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), 93-100. | Zbl 0652.46009

[00012] [N-S-W] J. L. Nelson, K. L. Singh and J. H. M. Whitfield, Normal structures and nonexpansive mappings in Banach spaces, in: Nonlinear Analysis, Th. M. Rhassias (ed.), World Sci., Singapore, 1987, 433-492.

[00013] [R1] S. Rolewicz, On drop property, Studia Math. 85 (1987), 27-35.

[00014] [R2] S. Rolewicz, On Δ-uniform convexity and drop property, ibid. 87 (1987), 181-191.

[00015] [S] B. Sims, Fixed points of nonexpansive maps on weak and weak*-compact sets, Queen's Univ. of Kingston Lecture Notes, 1982.