It is well known that the condition “f ∈ L¹ and f̂ ∈ L¹” is not sufficient to ensure the validity of the Poisson summation formula ∑f(k) = ∑f̂(k). We discuss here a stronger condition " and " and see for which values of a and b the condition is sufficient.
@article{bwmeta1.element.bwnjournal-article-smv109i3p303bwm, author = {Jean Kahane and Pierre-Gilles Lemari\'e-Rieusset}, title = {Remarques sur la formule sommatoire de Poisson}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {303-316}, zbl = {0820.42004}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p303bwm} }
Kahane, Jean; Lemarié-Rieusset, Pierre-Gilles. Remarques sur la formule sommatoire de Poisson. Studia Mathematica, Tome 108 (1994) pp. 303-316. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p303bwm/
[00000] [1] N. Bourbaki, Théories spectrales, chapitre II, Hermann, Paris, 1967.
[00001] [2] Y. Katznelson, Une remarque concernant la formule de Poisson, Studia Math. 19 (1967), 107-108. | Zbl 0169.39602
[00002] [3] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968.
[00003] [4] N. Wiener, The Fourier Integral, Cambridge University Press, 1933. | Zbl 0006.05401
[00004] [5] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, 1959. | Zbl 0085.05601