We show that zero-dimensional nondiscrete closed subgroups do exist in Banach spaces E. This happens exactly when E contains an isomorphic copy of . Other results on subgroups of linear spaces are obtained.
@article{bwmeta1.element.bwnjournal-article-smv109i3p277bwm, author = {Fredric Ancel and Tadeusz Dobrowolski and Janusz Grabowski}, title = {Closed subgroups in Banach spaces}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {277-290}, zbl = {0840.46012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p277bwm} }
Ancel, Fredric; Dobrowolski, Tadeusz; Grabowski, Janusz. Closed subgroups in Banach spaces. Studia Mathematica, Tome 108 (1994) pp. 277-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p277bwm/
[00000] [AO] J. M. Aarts and L. G. Oversteegen, The product structure of homogeneous spaces, Indag. Math. 1 (1990), 1-5. | Zbl 0696.54008
[00001] [BP1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. | Zbl 0084.09805
[00002] [BP2] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. | Zbl 0304.57001
[00003] [BPR] C. Bessaga, A. Pełczyński and S. Rolewicz, Some properties of the space (s), Colloq. Math. 7 (1957), 45-51.
[00004] [BHM] R. Brown, P. J. Higgins and S. A. Morris Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties, Math. Proc. Cambridge Philos. Soc. 78 (1975), 19-32.
[00005] [Da] M. M. Day, Normed Linear Spaces, 3rd ed., Springer, Berlin, 1973.
[00006] [Di] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
[00007] [DG] T. Dobrowolski and J. Grabowski, Subgroups of Hilbert spaces, Math. Z. 211 (1992), 657-669.
[00008] [DT] T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235. | Zbl 0472.57009
[00009] [E] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978.
[00010] [K] N. J. Kalton, Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974), 151-177. | Zbl 0296.46010
[00011] [P] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. | Zbl 0104.08503
[00012] [T] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262. | Zbl 0468.57015