Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
García-Cuerva, J. ; Kazarian, K.
Studia Mathematica, Tome 108 (1994), p. 255-276 / Harvested from The Polish Digital Mathematics Library

We study sufficient conditions on the weight w, in terms of membership in the Ap classes, for the spline wavelet systems to be unconditional bases of the weighted space Hp(w). The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216073
@article{bwmeta1.element.bwnjournal-article-smv109i3p255bwm,
     author = {J. Garc\'\i a-Cuerva and K. Kazarian},
     title = {Calder\'on-Zygmund operators and unconditional bases of weighted Hardy spaces},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {255-276},
     zbl = {0824.42011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p255bwm}
}
García-Cuerva, J.; Kazarian, K. Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces. Studia Mathematica, Tome 108 (1994) pp. 255-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p255bwm/

[00000] [B] S. Banach, Théorie des opérations linéaires, Warszawa, 1932; English transl.: Elsevier, 1987. | Zbl 0005.20901

[00001] [Bo] S. V. Bochkarev, Existence of bases in the space of analytic functions and some properties of the Franklin system, Mat. Sb. 98 (1974), 3-18.

[00002] [Ca] L. Carleson, An explicit unconditional basis in H1, Bull. Sci. Math. 104 (1980), 405-416. | Zbl 0495.46020

[00003] [C-C] A. Chang and Z. Ciesielski, Spline characterizations of H1, Studia Math. 75 (1983), 183-192.

[00004] [C1] Z. Ciesielski, Properties of the orthonormal Franklin system, ibid. 23 (1963), 141-157. | Zbl 0113.27204

[00005] [C2] Z. Ciesielski, Properties of the orthonormal Franklin system II, ibid. 27 (1966), 289-323. | Zbl 0148.04702

[00006] [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid. 51 (1974), 241-250. | Zbl 0291.44007

[00007] [D] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, 1991.

[00008] [G] J. García-Cuerva, Weighted Hp spaces, Dissertationes Math. 162 (1979).

[00009] [G1] J. García-Cuerva, Extrapolation of weighted norm inequalities from endpoint spaces to Banach lattices, J. London Math. Soc. (2) 46 (1992), 280-294. | Zbl 0770.42012

[00010] [G-R] J. García-Cuerva and J.-L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 114, 1985.

[00011] [H-M-W] R. A. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-252. | Zbl 0262.44004

[00012] [J-N] R. Johnson and C. J. Neugebauer, Homeomorphisms preserving Ap, Rev. Mat. Iberoamericana 3 (1987), 249-273.

[00013] [K] K. S. Kazarian, On bases and unconditional bases in the spaces Lp(dμ), 1 ≤ p < ∞ , Studia Math. 71 (1982), 227-249. | Zbl 0502.46009

[00014] [Ma] S. G. Mallat, Multiresolution approximation and wavelet orthonormal bases of L2(), Trans. Amer. Math. Soc. 315 (1989), 69-87.

[00015] [Mau] B. Maurey, Isomorphismes entre espaces H1, Acta Math. 145 (1980), 79-120.

[00016] [Me] Y. Meyer, Ondelettes et Opérateurs, Vols. I and II, Hermann, Paris, 1990.

[00017] [Mu] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016

[00018] [S-S] P. Sjölin and J. O. Strömberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983), 111-125. | Zbl 0519.46058

[00019] [St] J. O. Strömberg, A modified Franklin system and higher order spline systems on n as unconditional bases for Hardy spaces, in: Proc. Conf. in Honor of Antoni Zygmund, W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones (eds.), Wadsworth, 1981, 475-493.

[00020] [S-T] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.

[00021] [S-W] J. O. Strömberg and R. Wheeden, Fractional integrals on weighted Hp and Lp spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321.

[00022] [W] P. Wojtaszczyk, The Franklin system is an unconditional basis in H1, Ark. Mat. 20 (1982), 293-300. | Zbl 0534.46038

[00023] [W1] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, 1991.