We study sufficient conditions on the weight w, in terms of membership in the classes, for the spline wavelet systems to be unconditional bases of the weighted space . The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
@article{bwmeta1.element.bwnjournal-article-smv109i3p255bwm, author = {J. Garc\'\i a-Cuerva and K. Kazarian}, title = {Calder\'on-Zygmund operators and unconditional bases of weighted Hardy spaces}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {255-276}, zbl = {0824.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p255bwm} }
García-Cuerva, J.; Kazarian, K. Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces. Studia Mathematica, Tome 108 (1994) pp. 255-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p255bwm/
[00000] [B] S. Banach, Théorie des opérations linéaires, Warszawa, 1932; English transl.: Elsevier, 1987. | Zbl 0005.20901
[00001] [Bo] S. V. Bochkarev, Existence of bases in the space of analytic functions and some properties of the Franklin system, Mat. Sb. 98 (1974), 3-18.
[00002] [Ca] L. Carleson, An explicit unconditional basis in , Bull. Sci. Math. 104 (1980), 405-416. | Zbl 0495.46020
[00003] [C-C] A. Chang and Z. Ciesielski, Spline characterizations of , Studia Math. 75 (1983), 183-192.
[00004] [C1] Z. Ciesielski, Properties of the orthonormal Franklin system, ibid. 23 (1963), 141-157. | Zbl 0113.27204
[00005] [C2] Z. Ciesielski, Properties of the orthonormal Franklin system II, ibid. 27 (1966), 289-323. | Zbl 0148.04702
[00006] [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid. 51 (1974), 241-250. | Zbl 0291.44007
[00007] [D] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, 1991.
[00008] [G] J. García-Cuerva, Weighted spaces, Dissertationes Math. 162 (1979).
[00009] [G1] J. García-Cuerva, Extrapolation of weighted norm inequalities from endpoint spaces to Banach lattices, J. London Math. Soc. (2) 46 (1992), 280-294. | Zbl 0770.42012
[00010] [G-R] J. García-Cuerva and J.-L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 114, 1985.
[00011] [H-M-W] R. A. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-252. | Zbl 0262.44004
[00012] [J-N] R. Johnson and C. J. Neugebauer, Homeomorphisms preserving , Rev. Mat. Iberoamericana 3 (1987), 249-273.
[00013] [K] K. S. Kazarian, On bases and unconditional bases in the spaces , 1 ≤ p < ∞ , Studia Math. 71 (1982), 227-249. | Zbl 0502.46009
[00014] [Ma] S. G. Mallat, Multiresolution approximation and wavelet orthonormal bases of , Trans. Amer. Math. Soc. 315 (1989), 69-87.
[00015] [Mau] B. Maurey, Isomorphismes entre espaces , Acta Math. 145 (1980), 79-120.
[00016] [Me] Y. Meyer, Ondelettes et Opérateurs, Vols. I and II, Hermann, Paris, 1990.
[00017] [Mu] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016
[00018] [S-S] P. Sjölin and J. O. Strömberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983), 111-125. | Zbl 0519.46058
[00019] [St] J. O. Strömberg, A modified Franklin system and higher order spline systems on as unconditional bases for Hardy spaces, in: Proc. Conf. in Honor of Antoni Zygmund, W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones (eds.), Wadsworth, 1981, 475-493.
[00020] [S-T] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.
[00021] [S-W] J. O. Strömberg and R. Wheeden, Fractional integrals on weighted and spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321.
[00022] [W] P. Wojtaszczyk, The Franklin system is an unconditional basis in , Ark. Mat. 20 (1982), 293-300. | Zbl 0534.46038
[00023] [W1] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, 1991.