Mixed-norm spaces and interpolation
Ortega, Joaquín ; Fàbrega, Joan
Studia Mathematica, Tome 108 (1994), p. 233-254 / Harvested from The Polish Digital Mathematics Library

Let D be a bounded strictly pseudoconvex domain of n with smooth boundary. We consider the weighted mixed-norm spaces Aδ,kp,q(D) of holomorphic functions with norm fp,q,δ,k=(|α|kʃ0r0(ʃDr|Dαf|pdσr)q/prδq/p-1dr)1/q. We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces Aδ,kp(D) and we give results about real and complex interpolation between them. We apply these results to prove that Aδ,kp,q(D) is the intersection of a Besov space Bsp,q(D) with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm spaces.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216072
@article{bwmeta1.element.bwnjournal-article-smv109i3p233bwm,
     author = {Joaqu\'\i n Ortega and Joan F\`abrega},
     title = {Mixed-norm spaces and interpolation},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {233-254},
     zbl = {0826.32003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p233bwm}
}
Ortega, Joaquín; Fàbrega, Joan. Mixed-norm spaces and interpolation. Studia Mathematica, Tome 108 (1994) pp. 233-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p233bwm/

[00000] [AM] E. Amar, Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de n, Canad. J. Math. 30 (1978), 711-737. | Zbl 0385.32014

[00001] [BEA] F. Beatrous, Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116. | Zbl 0596.32005

[00002] [BEA-BU] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989).

[00003] [BER-LO] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976. | Zbl 0344.46071

[00004] [BE-CE] A. Bernal and J. Cerdà, Complex interpolation of quasi-Banach spaces with an A-convex containing space, Ark. Mat. 29 (1991), 183-201. | Zbl 0757.41031

[00005] [B-AN] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (3) (1983), 91-110. | Zbl 0466.32001

[00006] [BR-OR1] J. Bruna and J. M. Ortega, Traces on curves of Sobolev spaces of holomorphic functions, Ark. Mat. 29 (1991), 25-49. | Zbl 0737.46014

[00007] [BR-OR2] J. Bruna and J. M. Ortega, Interpolation in Hardy-Sobolev spaces, preprint.

[00008] [CO-RO] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque 77 (1980), 1-65.

[00009] [CO-WE] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.

[00010] [COU] B. Coupet, Décomposition atomique des espaces de Bergman, Indiana Univ. Math. J. 38 (1990), 917-941.

[00011] [DU] P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.

[00012] [FOR] J. E. Fornæss, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. | Zbl 0334.32020

[00013] [GA] S. Gadbois, Mixed-norm generalizations of Bergman spaces and duality, Proc. Amer. Math. Soc. 104 (1988), 1171-1180. | Zbl 0691.32002

[00014] [HA-LIT] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 28 (1932), 612-634.

[00015] [HO] T. Holmstedt, Interpolation of quasi-Banach spaces, Math. Scand. 26 (1970), 177-199. | Zbl 0193.08801

[00016] [LI1] E. Ligocka, On the space of Bloch harmonic functions and interpolation of spaces of harmonic and holomorphic functions, Studia Math. 87 (1987), 223-238. | Zbl 0657.31006

[00017] [LI2] E. Ligocka, On duality and interpolation for spaces of polyharmonic functions, ibid. 88 (1988), 139-163. | Zbl 0664.31008

[00018] [LU] D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), 319-336. | Zbl 0538.32004

[00019] [OR] J. M. Ortega, The Gleason problem in Bergman-Sobolev spaces, Complex Variables 20 (1992), 157-170. | Zbl 0726.32004

[00020] [OR-FA] J. M. Ortega and J. Fàbrega, Division and extension in weighted Bergman-Sobolev spaces, Publ. Mat. 36 (1992), 837-859. | Zbl 0777.32004

[00021] [RO] R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), 229-236. | Zbl 0496.32010

[00022] [SH] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of n, Trans. Amer. Math. Soc. 328 (1991), 619-637. | Zbl 0761.32001

[00023] [ST] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501

[00024] [STR] E. Straube, Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains, Trans. Amer. Math. Soc. 316 (1989), 653-671. | Zbl 0695.46034

[00025] [TR1] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

[00026] [TR2] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.

[00027] [VA] N. Varopoulus, BMO functions and ∂̅ equation, Pacific J. Math. 71 (1977), 221-273.