Let D be a bounded strictly pseudoconvex domain of with smooth boundary. We consider the weighted mixed-norm spaces of holomorphic functions with norm . We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces and we give results about real and complex interpolation between them. We apply these results to prove that is the intersection of a Besov space with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm spaces.
@article{bwmeta1.element.bwnjournal-article-smv109i3p233bwm, author = {Joaqu\'\i n Ortega and Joan F\`abrega}, title = {Mixed-norm spaces and interpolation}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {233-254}, zbl = {0826.32003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p233bwm} }
Ortega, Joaquín; Fàbrega, Joan. Mixed-norm spaces and interpolation. Studia Mathematica, Tome 108 (1994) pp. 233-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i3p233bwm/
[00000] [AM] E. Amar, Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de , Canad. J. Math. 30 (1978), 711-737. | Zbl 0385.32014
[00001] [BEA] F. Beatrous, Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116. | Zbl 0596.32005
[00002] [BEA-BU] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989).
[00003] [BER-LO] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976. | Zbl 0344.46071
[00004] [BE-CE] A. Bernal and J. Cerdà, Complex interpolation of quasi-Banach spaces with an A-convex containing space, Ark. Mat. 29 (1991), 183-201. | Zbl 0757.41031
[00005] [B-AN] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (3) (1983), 91-110. | Zbl 0466.32001
[00006] [BR-OR1] J. Bruna and J. M. Ortega, Traces on curves of Sobolev spaces of holomorphic functions, Ark. Mat. 29 (1991), 25-49. | Zbl 0737.46014
[00007] [BR-OR2] J. Bruna and J. M. Ortega, Interpolation in Hardy-Sobolev spaces, preprint.
[00008] [CO-RO] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in , Astérisque 77 (1980), 1-65.
[00009] [CO-WE] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
[00010] [COU] B. Coupet, Décomposition atomique des espaces de Bergman, Indiana Univ. Math. J. 38 (1990), 917-941.
[00011] [DU] P. Duren, Theory of Spaces, Academic Press, New York, 1970.
[00012] [FOR] J. E. Fornæss, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. | Zbl 0334.32020
[00013] [GA] S. Gadbois, Mixed-norm generalizations of Bergman spaces and duality, Proc. Amer. Math. Soc. 104 (1988), 1171-1180. | Zbl 0691.32002
[00014] [HA-LIT] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 28 (1932), 612-634.
[00015] [HO] T. Holmstedt, Interpolation of quasi-Banach spaces, Math. Scand. 26 (1970), 177-199. | Zbl 0193.08801
[00016] [LI1] E. Ligocka, On the space of Bloch harmonic functions and interpolation of spaces of harmonic and holomorphic functions, Studia Math. 87 (1987), 223-238. | Zbl 0657.31006
[00017] [LI2] E. Ligocka, On duality and interpolation for spaces of polyharmonic functions, ibid. 88 (1988), 139-163. | Zbl 0664.31008
[00018] [LU] D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), 319-336. | Zbl 0538.32004
[00019] [OR] J. M. Ortega, The Gleason problem in Bergman-Sobolev spaces, Complex Variables 20 (1992), 157-170. | Zbl 0726.32004
[00020] [OR-FA] J. M. Ortega and J. Fàbrega, Division and extension in weighted Bergman-Sobolev spaces, Publ. Mat. 36 (1992), 837-859. | Zbl 0777.32004
[00021] [RO] R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), 229-236. | Zbl 0496.32010
[00022] [SH] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of , Trans. Amer. Math. Soc. 328 (1991), 619-637. | Zbl 0761.32001
[00023] [ST] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501
[00024] [STR] E. Straube, Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains, Trans. Amer. Math. Soc. 316 (1989), 653-671. | Zbl 0695.46034
[00025] [TR1] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
[00026] [TR2] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
[00027] [VA] N. Varopoulus, BMO functions and ∂̅ equation, Pacific J. Math. 71 (1977), 221-273.