For large classes of indices, we characterize the weights u, v for which the Hardy operator is bounded from into . For more general operators of Hardy type, norm inequalities are proved which extend to weighted amalgams known estimates in weighted -spaces. Amalgams of the form , 1 < p,q < ∞ , q ≠ p, , are also considered and sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator and local maximal operator in these spaces are obtained.
@article{bwmeta1.element.bwnjournal-article-smv109i2p133bwm, author = {C. Carton-Lebrun and H. Heinig and S. Hofmann}, title = {Integral operators and weighted amalgams}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {133-157}, zbl = {0824.42015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i2p133bwm} }
Carton-Lebrun, C.; Heinig, H.; Hofmann, S. Integral operators and weighted amalgams. Studia Mathematica, Tome 108 (1994) pp. 133-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i2p133bwm/
[00000] [1] K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal. 14 (4) (1983), 834-844. | Zbl 0527.26010
[00001] [2] J. J. Benedetto, H. P. Heinig and R. Johnson, Weighted Hardy spaces and the Laplace transform II, Math. Nachr. 132 (1987), 29-55. | Zbl 0626.44002
[00002] [3] G. Bennett, Some elementary inequalities III, Quart. J. Math. Oxford Ser. (2) 42 (1991), 149-174. | Zbl 0751.26007
[00003] [4] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. | Zbl 0402.26006
[00004] [5] A. P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1978), 297-306. | Zbl 0341.44007
[00005] [6] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. | Zbl 0222.26019
[00006] [7] J. J. F. Fournier and J. Stewart, Amalgams of and , Bull. Amer. Math. Soc. 13 (1985), 1-21.
[00007] [8] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
[00008] [9] F. Holland, Harmonic analysis on amalgams of and , J. London Math. Soc. (2) 10 (1975), 295-305.
[00009] [10] B. Jawerth, Weighted inequalities for maximal operators : linearization, localization and factorization, Amer. J. Math. 108 (1986), 361-414. | Zbl 0608.42012
[00010] [11] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985.
[00011] [12] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016
[00012] [13] B. Opic and A. Kufner, Hardy Type Inequalities, Pitman Res. Notes Math. 219, Longman, 1990.
[00013] [14] G. Sinnamon, Spaces defined by their level function and their dual, preprint.
[00014] [15] R. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977.