Integral operators and weighted amalgams
Carton-Lebrun, C. ; Heinig, H. ; Hofmann, S.
Studia Mathematica, Tome 108 (1994), p. 133-157 / Harvested from The Polish Digital Mathematics Library

For large classes of indices, we characterize the weights u, v for which the Hardy operator is bounded from q̅(Lvp̅) into q(Lup). For more general operators of Hardy type, norm inequalities are proved which extend to weighted amalgams known estimates in weighted Lp-spaces. Amalgams of the form q(Lwp), 1 < p,q < ∞ , q ≠ p, wAp, are also considered and sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator and local maximal operator in these spaces are obtained.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216065
@article{bwmeta1.element.bwnjournal-article-smv109i2p133bwm,
     author = {C. Carton-Lebrun and H. Heinig and S. Hofmann},
     title = {Integral operators and weighted amalgams},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {133-157},
     zbl = {0824.42015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i2p133bwm}
}
Carton-Lebrun, C.; Heinig, H.; Hofmann, S. Integral operators and weighted amalgams. Studia Mathematica, Tome 108 (1994) pp. 133-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i2p133bwm/

[00000] [1] K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal. 14 (4) (1983), 834-844. | Zbl 0527.26010

[00001] [2] J. J. Benedetto, H. P. Heinig and R. Johnson, Weighted Hardy spaces and the Laplace transform II, Math. Nachr. 132 (1987), 29-55. | Zbl 0626.44002

[00002] [3] G. Bennett, Some elementary inequalities III, Quart. J. Math. Oxford Ser. (2) 42 (1991), 149-174. | Zbl 0751.26007

[00003] [4] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. | Zbl 0402.26006

[00004] [5] A. P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1978), 297-306. | Zbl 0341.44007

[00005] [6] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. | Zbl 0222.26019

[00006] [7] J. J. F. Fournier and J. Stewart, Amalgams of Lp and q, Bull. Amer. Math. Soc. 13 (1985), 1-21.

[00007] [8] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.

[00008] [9] F. Holland, Harmonic analysis on amalgams of Lp and q, J. London Math. Soc. (2) 10 (1975), 295-305.

[00009] [10] B. Jawerth, Weighted inequalities for maximal operators : linearization, localization and factorization, Amer. J. Math. 108 (1986), 361-414. | Zbl 0608.42012

[00010] [11] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985.

[00011] [12] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016

[00012] [13] B. Opic and A. Kufner, Hardy Type Inequalities, Pitman Res. Notes Math. 219, Longman, 1990.

[00013] [14] G. Sinnamon, Spaces defined by their level function and their dual, preprint.

[00014] [15] R. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977.